Journal of Surfactants and Detergents

, Volume 15, Issue 5, pp 541–550 | Cite as

Effect of Temperature, Salts and Ureas on the Association Behavior of an Amphiphilic Phenothiazine Drug Promethazine Hydrochloride

  • Kabir-ud-DinEmail author
  • Malik Abdul Rub
  • Andleeb Z. Naqvi
Original Article


Association behavior of an amphiphilic phenothiazine drug promethazine hydrochloride in the presence of inorganic salts (LiCl, NaF, NaCl, NaBr, and KCl) and ureas (urea and thiourea) has been studied conductometrically at different additive concentrations (0–100 mmol kg−1) and temperatures (293.15–308.15 K). The critical micelle concentration (CMC) values showed an inverted U-shaped behavior with temperature; the maximum being at 298.15 K with or without additives. The inorganic salts decreased the CMC which is explained on the basis of nature and ion size. Ureas decreased the CMC at low concentration (0.2 mmol kg−1 urea and 0.1 mmol kg−1 thiourea) but, at higher concentrations, an increase in CMC was observed with both the additives. Relevant thermodynamic parameters were also evaluated and discussed on the basis of the nature of particular types of the additives. The thermodynamic parameters suggest dehydration of the hydrophobic part of the drug at higher temperatures.


Interfacial science Surface activity Promethazine hydrochloride Phenothiazine drug 



The authors are thankful to the Council of Scientific and Industrial Research, New Delhi, India, for providing a research grant (No. 01 (2208)/08/EMR–II) and to University Grants Commission, New Delhi, for the UGC-Emeritus Fellowship.


  1. 1.
    Mall S, Buckton G, Rawlins DA (1996) Dissolution behaviour of sulphonamides into sodium dodecyl sulphate micelles: a thermodynamic approach. J Pharm Sci 85:75–78CrossRefGoogle Scholar
  2. 2.
    Attwood D, Natarajan R (1981) Effect of pH on the micellar properties of amphiphilic drugs in aqueous solution. J Pharm Pharmacol 33:136–140CrossRefGoogle Scholar
  3. 3.
    Atherton AD, Barry BW (1985) Micellar properties of phenothiazine drugs: a laser light scattering study. J Colloid Interface Sci 106:479–489CrossRefGoogle Scholar
  4. 4.
    Attwood D (1995) The mode of association of amphiphilic drugs in aqueous solution. Adv Colloid Interface Sci 55:271–303CrossRefGoogle Scholar
  5. 5.
    Schreier S, Malheiros SVP, de Paula E (2000) Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta 1508:210–234CrossRefGoogle Scholar
  6. 6.
    Zang L, Somasundaran P, Maltesh C (1996) Electrolyte effects on the surface tension and micellization of n-dodecyl β-d-maltoside solutions. Langmuir 12:2371–2373CrossRefGoogle Scholar
  7. 7.
    Hofmeister F (1888) On the understanding of the effects of salts. Arch Exp Pathol Pharmacol 24:247–260CrossRefGoogle Scholar
  8. 8.
    Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New YorkGoogle Scholar
  9. 9.
    Tanford C (1964) Isothermal unfolding of globular proteins in aqueous urea solutions. J Am Chem Soc 86:2050–2059CrossRefGoogle Scholar
  10. 10.
    Creighton TE (1993) Proteins: structures and molecular principles. Freeman, New YorkGoogle Scholar
  11. 11.
    Das Gupta PK, Moulik SP (1989) Effects of urea and a nonionic surfactant on the micellization and counterion binding properties of cetyltrimethyl ammonium bromide and sodium dodecyl sulfate. Colloid Polym Sci 267:246–254CrossRefGoogle Scholar
  12. 12.
    Baglioni P, Rivara-Minten E, Dei L, Ferroni E (1990) ESR study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions: effect of urea. J Phys Chem 94:8218–8222CrossRefGoogle Scholar
  13. 13.
    Causi S, De Lissi R, Miloto S, Tirone N (1991) Dodecyltrimethylammonium bromide in water-urea mixtures: volumes, heat capacities, and conductivities. J Phys Chem 95:5664–5673CrossRefGoogle Scholar
  14. 14.
    Alexandridis P, Athanassiou V, Hatton TA (1995) Pluronic-P105 PEO-PPO-PEO block copolymer in aqueous urea solutions: micelle formation, structure, and microenvironment. Langmuir 11:2442–2450CrossRefGoogle Scholar
  15. 15.
    Abuin EB, Lissi EA, Borsarelli C (1996) Tl+/Na+ competitive binding at the surface of dodecyl sulfate micelles in water–urea mixtures. J Colloid Interface Sci 184:652–657CrossRefGoogle Scholar
  16. 16.
    Hao J, Wang T, Shi S, Lu R, Wang H (1997) Electron spin resonance study of effect of urea on microenvironmental properties of alkylbenzenesulfonate micellar solutions. Langmuir 13:1897–1900CrossRefGoogle Scholar
  17. 17.
    Ruiz CC (1999) Micelle formation and microenvironmental properties of sodium dodecyl sulfate in aqueous urea solutions. Colloids Surf A 147:349–357CrossRefGoogle Scholar
  18. 18.
    Raghuraman H, Pradhan SK, Chattopadhyay A (2004) Effect of urea on the organization and dynamics of Triton X-100 micelles: a fluorescence approach. J Phys Chem B 108:2489–2496CrossRefGoogle Scholar
  19. 19.
    Kumar S, Parveen N, Kabir-ud-Din (2004) Effect of urea addition on micellization and the related phenomena. J Phys Chem B 108:9588–9592CrossRefGoogle Scholar
  20. 20.
    Kumar S, Parveen N, Kabir-ud-Din (2005) Additive-induced association in unconventional systems: a case of the hydrotrope. J Surf Detergent 7:109–114CrossRefGoogle Scholar
  21. 21.
    Kumar S, Parveen N, Kabir-ud-Din (2005) Influence of different ureas on aggregational properties of aqueous surfactant systems. Colloids Surf A 268:45–51CrossRefGoogle Scholar
  22. 22.
    Enea O, Jolicoeur C (1982) Heat capacities and volumes of several oligopeptides in urea-water mixtures at 25 °C. Some implications for protein unfolding. J Phys Chem 86:3870–3881CrossRefGoogle Scholar
  23. 23.
    Liepinsh E, Otting G (1994) Specificity of urea binding to proteins. J Am Chem Soc 116:9670–9674CrossRefGoogle Scholar
  24. 24.
    Almgren M, Swarup S (1983) Size of sodium dodecyl sulfate micelles in the presence of additives. alcohols and other polar compounds. J Colloid Interface Sci 91:256–266CrossRefGoogle Scholar
  25. 25.
    Costantino L, D’Errico G, Roscigno P, Vitagliano V (2000) Effect of urea and alkylureas on micelle formation by a nonionic surfactant with short hydrophobic tail at 25 °C. J Phys Chem B 104:7326–7333CrossRefGoogle Scholar
  26. 26.
    Dias LG, Florenzano FH, Reed WF, Baptista MS, Souza SMB, Alvarez H, Chaimovich EB, Cuccovia IM, Amaral CLC, Brasil CR, Romsted LS, Politi MJ (2002) Effect of urea on biomimetic systems: neither water 3-D structure rupture nor direct mechanism, simply a more “polar water”. Langmuir 18:319–324CrossRefGoogle Scholar
  27. 27.
    Sarmiento F, Lopez-Fontan JL, Prieto V, Attwood D, Mosquera V (1997) Mixed micelles of structurally related antidepressant drugs. Colloid Polym Sci 27:1144–1147CrossRefGoogle Scholar
  28. 28.
    Taboada P, Attwood D, Ruso JM, Suarez MJ, Sarmiento F, Mosquera V (1999) Concentration dependence of the osmotic and activity coefficients of imipramine and clomipramine hydrochlorides in aqueous solution. J Chem Eng Data 44:820–822CrossRefGoogle Scholar
  29. 29.
    Taboada P, Attwood D, Ruso JM, Garcia M, Mosquera V (2000) Static and dynamic light scattering study on the association of some antidepressants in aqueous electrolyte solutions. Phys Chem Chem Phys 2:5175–5179CrossRefGoogle Scholar
  30. 30.
    Taboada P, Attwood D, Ruso JM, Garcia M, Mosquera V (2001) Thermodynamic properties of some antidepressant drugs in aqueous solution. Langmuir 17:173–177CrossRefGoogle Scholar
  31. 31.
    van Iperen HP, van Henegouwen GMJ (1996) Chlorpromazine, a candidate drug for photopheresis. J Photochem Photobiol B 34:217–224CrossRefGoogle Scholar
  32. 32.
    Elisei F, Latterini L, Aloisi GG, Mazzucato U, Viola G, Mioio G, Vedaldi D, Dall’Acqua F (2002) Excited-state properties and in vitro phototoxicity studies of three phenothiazine derivatives. Photochem Photobiol 75:11–21CrossRefGoogle Scholar
  33. 33.
    Viola G, Latterini L, Vedaldi D, Aloisi GG, Dall’Acqua F, Gabellini N, Elisei F, Barbafina A (2003) Photosensitization of DNA strand breaks by three phenothiazine derivates. Chem Res Toxicol 16:644–651CrossRefGoogle Scholar
  34. 34.
    Mouritsen OG, Jorgensen K (1994) Dynamical order and disorder in lipid. Bilayers Chem Phys Lipids 73:3–26CrossRefGoogle Scholar
  35. 35.
    Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270CrossRefGoogle Scholar
  36. 36.
    Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley, NYCrossRefGoogle Scholar
  37. 37.
    Lange KR (ed) (1999) Surfactants: a practical handbook. Hanser, MunichGoogle Scholar
  38. 38.
    Bunton CA, Nome F, Quina FH, Romsted LS (1991) Ion binding and reactivity at charged aqueous interfaces. Acc Chem Res 24:357–364CrossRefGoogle Scholar
  39. 39.
    Myers D (1988) Surfactant science and technology. VCH, NYGoogle Scholar
  40. 40.
    Marcus Y (1985) Ion solvation. Wiley, ChichesterGoogle Scholar
  41. 41.
    Nightangle ER Jr (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387CrossRefGoogle Scholar
  42. 42.
    Gonzalez-Perez A, del Castillo JL, Czapkiewicz J, Rodriguez JR (2001) Conductivity, density, and adiabatic compressibility of dodecyldimethylbenzylammonium chloride in aqueous solutions. J Phys Chem B 105:1720–1724CrossRefGoogle Scholar
  43. 43.
    Rodriguez JR, Gonzalez-Perez A, del Castillo JL, Czapkiewicz J (2002) Thermodynamics of micellization of alkyldimethylbenzylammonium chlorides in aqueous solutions. J Colloid Interface Sci 250:438–443CrossRefGoogle Scholar
  44. 44.
    Candau SJ, Hirsch E, Zana R (1984) New aspects of the behaviour of alkyltrimethylammonium bromide micelles: light scattering and viscosimetric studies. J Phys (Paris) 45:1263–1270Google Scholar
  45. 45.
    Malliaris A, Lang J, Zana R (1986) Dynamic behaviour of fluorescence quenchers in cetyltrimethylammonium chloride micelles. J Chem Soc Faraday Trans 82:109–118CrossRefGoogle Scholar
  46. 46.
    Alam Md S, Naqvi AZ, Kabir-ud-Din (2007) Surface and micellar properties of some amphiphilic drugs in the presence of additives. J Chem Eng Data 52:1326–1331CrossRefGoogle Scholar
  47. 47.
    Kresheck GC, Scheraga HA (1965) The temperature dependence of the enthalpy of formation of the amide hydrogen bond—the urea model. J Phys Chem 69:1704–1706CrossRefGoogle Scholar
  48. 48.
    Manabe M, Koda M, Shirahama K (1980) The effect of 1-alkanols on ionization of sodium dodecyl sulfate micelles. J Colloid Interface Sci 77:189–194CrossRefGoogle Scholar
  49. 49.
    Bhanumathi R, Vijayalakshamma SK (1986) Proton NMR chemical shifts of solvent water in aqueous solutions of monosubstituted ammonium compounds. J Phys Chem 90:4666–4669CrossRefGoogle Scholar
  50. 50.
    Burke SE, Rodgers MP, Palepu R (2001) A thermodynamic and photophysical study of the effects of thiourea on the micellar properties of aqueous sodium dodecyl sulphate solution. Mol Phys 99:517–524CrossRefGoogle Scholar
  51. 51.
    Islam MN, Kato T (2003) Temperature dependence of the surface phase behavior and micelle formation of some nonionic surfactants. J Phys Chem B 107:965–971CrossRefGoogle Scholar
  52. 52.
    Lopez-Fontan JL, Costa V, Ruso JM, Prieto G, Sarmiento F (2004) Electrical conductivities and critical micelle concentrations (determined by the local polynomial regression method) of imipramine and clomipramine hydrochlorides from (283 to 313) K. J Chem Eng Data 49:1008–1012CrossRefGoogle Scholar
  53. 53.
    Kabir-ud-Din, Rub MA, Naqvi AZ (2010) Mixed micelle formation between amphiphilic drug amitriptyline hydrochloride and surfactants (conventional and gemini) at 293.15–308.15 K. J Phys Chem B 114:6354–6364CrossRefGoogle Scholar
  54. 54.
    Zana R (1980) Ionization of cationic micelles: effect of the detergent structure. J Colloid Interface Sci 78:330–337CrossRefGoogle Scholar
  55. 55.
    Asakawa T, Kitano H, Ohta A, Miyagishi S (2001) Convenient estimation for counterion dissociation of cationic micelles using chloride-sensitive fluorescence probe. J Colloid Interface Sci 242:284–287CrossRefGoogle Scholar
  56. 56.
    Okano T, Tamura T, Nanoka T, Ueda S, Lee S, Sugihara G (2000) Effects of side chain length and degree of counterion binding on micellization of sodium salts of α-myristic acid alkyl esters in water: a thermodynamic study. Langmuir 16:3777–3783CrossRefGoogle Scholar
  57. 57.
    Gorski N, Kalus J (2001) Temperature dependence of the sizes of tetradecyltrimethylammonium bromide micelles in aqueous solutions. Langmuir 17:4211–4215CrossRefGoogle Scholar
  58. 58.
    Taboada P, Ruso JM, Garcia M, Mosquera V (2001) Surface properties of some amphiphilic antidepressant drugs. Colloids Surf A 179:125–128CrossRefGoogle Scholar
  59. 59.
    Taboada P, Martinez-Landeira P, Ruso JM, Garcia M, Mosquera V (2002) Aggregation energies of some amphiphilic antidepressant drugs. Colloids Surf A 197:95–99CrossRefGoogle Scholar
  60. 60.
    Nusselder JJH, Engberts JBFN (1992) Toward a better understanding of the driving force for micelle formation and micellar growth. J Colloid Interface Sci 148:353–361CrossRefGoogle Scholar
  61. 61.
    Kresheck GC (1975) Aqueous solutions of amphiphiles and macromolecules. In: Franks F (ed) Water. A comprehensive treatise. Plenum, NYGoogle Scholar

Copyright information

© AOCS 2012

Authors and Affiliations

  • Kabir-ud-Din
    • 1
    Email author
  • Malik Abdul Rub
    • 1
  • Andleeb Z. Naqvi
    • 1
  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia

Personalised recommendations