Journal of Surfactants and Detergents

, Volume 15, Issue 1, pp 23–32 | Cite as

Solubilization of Aromatic Hydrocarbons in Ethylene Oxide-Propylene Oxide Triblock Micelles: Location of Solubilizate and its Effect on Micelle Size from 2D NMR and Scattering Techniques

  • Paresh Parekh
  • Kulbir Singh
  • D. Gerrard Marangoni
  • Vinod K. Aswal
  • Pratap Bahadur
Original Article

Abstract

The solubilization of benzene and toluene in micellar solutions and the effects on the micellization and micelle size of ethylene oxide-propylene oxide triblock copolymers were investigated by dynamic light scattering (DLS), small angle neutron scattering (SANS), and 2D NMR spectroscopy. The copolymeric surfactants have the same size as the middle hydrophobic polypropylene oxide block (Mol. Wt. 3250) and varying polyethylene oxide end blocks (30, 40 and 50%). The solubilization and the properties of the micelles in the presence of the solubilizates were investigated; the results reveal that the more hydrophobic copolymer showed better solubilization. The cloud points of the copolymers decreased in the presence of oils; the depression in the cloud point is due to the formation of an electron donor–acceptor complex. DLS shows that the effect of benzene is dominated at high oil concentration. SANS data show that the micelles remain spherical in shape and that the micellar core size does not change with higher benzene concentration; observed changes in the low scattering vector region could be because of some small amount of benzene clusters formed at higher benzene concentration. Finally, the locus of solubilization of the oils in the copolymer micelles was determined via 2D NMR experiments. In all cases, significant nuclear Overhauser effect spectroscopy (NOESY) cross peaks were observed that appeared to correlate well with the expected loci of these solubilizates in micelles. Hence, the noninvasive NOESY technique provides important information on the location of the aromatic solubilizates in these copolymer micelles that depends on the structure of the oils.

Keywords

Ethylene oxide Propylene oxide Triblock copolymers Micelles Solubilization Scattering 

References

  1. 1.
    Pluronic and tetronic surfactants technical brochure. BASF Corp., Parsippany (1989)Google Scholar
  2. 2.
    Nakashima K, Bahadur P (2006) Aggregation of water-soluble block copolymers in aqueous solutions: recent trends. Adv Colloid Interf Sci 123–126:75–96CrossRefGoogle Scholar
  3. 3.
    Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)–poly(propylene oxide)- poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A 96:1–46CrossRefGoogle Scholar
  4. 4.
    Hamely IW (2005) Block copolymers in solution: fundamentals and applications. Wiley, New YorkGoogle Scholar
  5. 5.
    Chu B, Zhou Z (1996) Physical chemistry of polyoxyalkylene block copolymer surfactants. In: Nace VM (ed) Nonionic surfactants: polyoxyalkylene block copolymers. Marcel Dekker, New York, pp 67–143Google Scholar
  6. 6.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant: syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  7. 7.
    Abdullin TI, Bondar OV, Shtyrlin YG, Kahraman M, Culha M (2010) Pluronic block copolymer-mediated interactions of organic compounds with noble metal nanoparticles for SERS analysis. Langmuir 26:5153–5159CrossRefGoogle Scholar
  8. 8.
    Housley L, Anderson T, Sontag N, Han SH, Britt DW, Anderson AJ (2009) Pluronics’ influence on pseudomonad biofilm and phenazine production. FEMS Microbiol Lett 293:148–153CrossRefGoogle Scholar
  9. 9.
    Chiappetta DA, Sosnik A (2007) Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–317CrossRefGoogle Scholar
  10. 10.
    Bahadur P, Pandya K, Almgren M, Li P, Stilbs P (1993) Effect of inorganic salts on the micellar behaviour of ethylene oxide–propylene oxide block copolymers in aqueous solution. Colloid Polym Sci 271:657–667CrossRefGoogle Scholar
  11. 11.
    Bahadur P, Li P, Almgren M, Brown W (1992) Effect of potassium fluoride on the micellar behavior of Pluronic F-68 in aqueous solution. Langmuir 8:1903–1907CrossRefGoogle Scholar
  12. 12.
    Alexandridis P, Athanassiou V, Hatton TA (1995) Pluronic-P105 PEO-PPO-PEO block copolymer in aqueous urea solutions: micelle formation, structure, and microenvironment. Langmuir 11:2442–2450CrossRefGoogle Scholar
  13. 13.
    Armstrong J, Chowdhary B, Mitchell J, Beezer A, Leharne S (1996) Effect of cosolvents and cosolutes upon aggregation transitions in aqueous solutions of the Poloxamer F 87 (Poloxamer P237): a high sensitivity differential scanning calorimetry study. J Phys Chem 100:1738–1745CrossRefGoogle Scholar
  14. 14.
    Mansur C, Spinelli LS, Lucas EF, Gonzalez G (1999) The influence of a hydrotropic agent in the properties of aqueous solutions containing poly(ethylene oxide)–poly(propylene oxide) surfactants. Colloid Surf A 149:291–300CrossRefGoogle Scholar
  15. 15.
    Mata J, Joshi T, Varade D, Ghosh G, Bahadur P (2004) Aggregation behavior of a PEO–PPO–PEO block copolymer + ionic surfactants mixed systems in water and aqueous salt solutions. Colloid Surf A 2741–2747Google Scholar
  16. 16.
    Almgren M, Stam JV, Lindblad C, Li P, Stilbs P, Bahadur P (1991) Aggregation of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in the presence of sodium dodecyl sulfate in aqueous solution. J Phys Chem 95:5677–5684CrossRefGoogle Scholar
  17. 17.
    Kadam Y, Bharatiya B, Hassan PA, Verma G, Aswal VK, Bahadur P (2010) Effect of an amphiphilic diol (Surfynol®) on the micellar characteristics of PEO–PPO–PEO block copolymers in aqueous solutions. Colloid Surf A 363:110–118CrossRefGoogle Scholar
  18. 18.
    Hurter P, Hatton T (1992) Solubilization of polycyclic aromatic hydrocarbons by poly(ethylene oxide-propylene oxide) block copolymer micelles: Effects of polymer structure. Langmuir 8:1291–1299CrossRefGoogle Scholar
  19. 19.
    Gadelle F, Koros W, Schechter RS (1995) Solubilization of aromatic solutes in block copolymers. Macromolecules 28:4883–4892CrossRefGoogle Scholar
  20. 20.
    Vauthey S, Leser M, Garti N, Watzke H (2000) Solubilization of hydrophilic compounds in copolymer aggregates. J Colloid Interf Sci 225:16–24CrossRefGoogle Scholar
  21. 21.
    Menge U, Lang P, Findenegg GH (1999) From oil-swollen wormlike micelles to microemulsion droplets: a static light scattering study of the L1 phase of the system water + C12E5 + Decane. J Phys Chem B 103:5768–5774CrossRefGoogle Scholar
  22. 22.
    Menge U, Lang P, Findenegg GH, Strunz P (2003) Structural transition of oil-swollen cylindrical micelles of C12E5 in water studied by SANS. J Phys Chem B 107:1316–1320CrossRefGoogle Scholar
  23. 23.
    Nagarajan R, Chaiko MA, Ruckenstein E (1984) Locus of solubilization of benzene in surfactant micelles. J Phys Chem 88:2916–2922CrossRefGoogle Scholar
  24. 24.
    Nagarajan R (1999) Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic (PEO–PPO–PEO) block copolymers. Colloid Surf B 16:55–72CrossRefGoogle Scholar
  25. 25.
    Lebens PJM, Keurentjes JTF (1996) Temperature-induced solubilization of hydrocarbons in aqueous block copolymer solutions. Ind Eng Chem Res 35:3415–3421CrossRefGoogle Scholar
  26. 26.
    Lazzara G, Milioto S, Muratore N (2008) Solubilization of an organic solute in aqueous solutions of unimeric block copolymers and their mixtures with monomeric surfactant: volume, surface tension, differential scanning calorimetry, viscosity, and fluorescence spectroscopy studies. J Phys Chem B 112:5616–5625CrossRefGoogle Scholar
  27. 27.
    Ma J, Wang Y, Guo C, Liu H, Tang Y, Bahadur P (2007) Oil-induced aggregation of block copolymer in aqueous solution. J Phys Chem B 111:11140–11148CrossRefGoogle Scholar
  28. 28.
    Lettow J, Lancaster T, Glinka C, Ying J (2005) Small-angle neutron scattering and theoretical investigation of poly(ethylene oxide) − poly(propylene oxide)—poly(ethylene oxide) stabilized oil-in-water microemulsions. Langmuir 21:5738–5746CrossRefGoogle Scholar
  29. 29.
    Sharp MA, Washington C, Cosgrove T (2010) Solubilisation of model adjuvants by Pluronic block copolymers. J Colloid Interf Sci 344:438–446CrossRefGoogle Scholar
  30. 30.
    Causse J, Lagerge S, Menorval LC, Faure S (2006) Micellar solubilization of tributyl phosphate in aqueous solutions of pluronic block copolymers: part II. Structural characterization inferred by 1H NMR. J Colloid Interf Sci 300:724–734CrossRefGoogle Scholar
  31. 31.
    Jian-Xi Z, Yu YX (2002) Solubilization kinetics of benzene in pluronic F127 and P123 aqueous micellar solutions. Acta Phys Chim Sin 18:377–380Google Scholar
  32. 32.
    Li JL, Chen BH (2002) Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chem Eng Sci 57:2825–2835CrossRefGoogle Scholar
  33. 33.
    Mishael YG, Dubin PL (2005) Toluene solubilization induces different modes of mixed micelle growth. Langmuir 21:9803–9808CrossRefGoogle Scholar
  34. 34.
    Mohamed A, Mahfoodh AM (2006) Solubilization of naphthalene and pyrene by sodium dodecyl sulfate (SDS) and polyoxyethylene sorbitan monooleate (Tween 80) mixed micelles. Colloids Surf A 287:44–50CrossRefGoogle Scholar
  35. 35.
    Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, Fang X (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int J Pharm 376:176–185CrossRefGoogle Scholar
  36. 36.
    Aswal VK, Goyal PS (2000) Small-angle neutron scattering diffractometer at Dhruva Reactor. Curr Sci 79:947–953Google Scholar
  37. 37.
    Pedersen JS, Gerstenberg C (1996) Scattering form factor of block copolymer micelles. Macromolecules 29:1363–1365CrossRefGoogle Scholar
  38. 38.
    Pedersen JS (2000) Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores. J Appl Crystallogr 33:637–640CrossRefGoogle Scholar
  39. 39.
    Percus JK, Yevick G (1958) Analysis of classical statistical mechanics by means of collective coordinates. J Phys Rev 110:1–13CrossRefGoogle Scholar
  40. 40.
    Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRefGoogle Scholar
  41. 41.
    Ma J, Guo C, Tang Y, Liu H (2007) 1H NMR Spectroscopic investigations on the micellization and gelation of PEO–PPO–PEO block copolymers in aqueous solutions. Langmuir 23:9596–9605CrossRefGoogle Scholar
  42. 42.
    Pandit N, Trygstad T, Croy S, Bohorquez M, Koch C (2000) Effect of salts on the micellization, clouding, and solubilization behavior of Pluronic F127 solutions. J Colloid Interf Sci 222:213–220CrossRefGoogle Scholar
  43. 43.
    Schott H, Han S (1976) Effect of inorganic additives on solutions of nonionic surfactants III: CMCs and surface properties. J Pharm Sci 65:975–978CrossRefGoogle Scholar
  44. 44.
    Schott H, Royce A (1984) Effect of inorganic additives on solutions of nonionic surfactants VI: further cloud point relations. J Pharm Sci 73:793–799CrossRefGoogle Scholar
  45. 45.
    Liu T, Nace VM, Chu B (1997) Cloud-point temperatures of BnEmBn and PnEmPn type triblock copolymers in aqueous solution. J Phys Chem B 101:8074–8078CrossRefGoogle Scholar
  46. 46.
    Diallo MS, Abrlola LM, Weber WJ (1994) Solubilization of nonaqueous phase liquid hydrocarbons in micellar solutions of dodecyl alcohol ethoxylates. Environ Sci Technol 28:1829–1837CrossRefGoogle Scholar
  47. 47.
    Yoshida Z, Osawa E (1965) Intermolecular hydrogen bond involving a π-base as the proton acceptor. II. Interaction between phenol and various π-bases. Preliminary infrared study. J Am Chem Soc 87:1467–1469CrossRefGoogle Scholar
  48. 48.
    Yoshida Z, Osawa E (1966) Hydrogen bonding of phenol to π Electrons of aromatics, polyolefins, heteroaromatics, fulvenes, and azulenes. J Am Chem Soc 88:4019–4026CrossRefGoogle Scholar
  49. 49.
    Nagarajan R, Barry M, Ruckenstein E (1986) Unusual selectivity in solubilization by block copolymer micelles. Langmuir 2:210–215CrossRefGoogle Scholar
  50. 50.
    Bharatiya B, Guo C, Ma JH, Hassan PA, Bahadur P (2007) Aggregation and clouding behavior of aqueous solution of EO–PO block copolymer in presence of n- alkanols. Euro Polym J 43:1883–1891CrossRefGoogle Scholar
  51. 51.
    Su YL, Wei XF, Liu HZ (2003) Effect of sodium chloride on association behavior of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer in aqueous solutions. J Colloid Interf Sci 264:526–531CrossRefGoogle Scholar
  52. 52.
    Bharatiya B, Aswal VK, Hassan PA, Bahadur P (2008) Influence of a hydrophobic diol on the micellar transitions of Pluronic P85 in aqueous solution. J Colloid Interf Sci 320:452–459CrossRefGoogle Scholar
  53. 53.
    Liu Y, Chen S, Huang JS (1998) Small-angle neutron scattering analysis of the structure and interaction of triblock copolymer micelles in aqueous solution. Macromolecules 31:2236–2244CrossRefGoogle Scholar
  54. 54.
    Goldmints I, Gottberg FK, Smith KA, Hatton TA (1997) Small-angle neutron scattering study of PEO–PPO–PEO micelle structure in the unimer-to-micelle transition region. Langmuir 13:3659–3664CrossRefGoogle Scholar
  55. 55.
    Aswal VK, Kohlbrecher J (2006) Entropy-induced micellization of block copolymer in aqueous solution in presence of selective additives. Chem Phys Lett 425:118–122CrossRefGoogle Scholar
  56. 56.
    Putra EGR, Seong BS, Ikram A (2009) Micelle structural studies on oil solubilization by a small-angle neutron scattering. Nucl Instrum Methods Phys Res A 600:291–293CrossRefGoogle Scholar
  57. 57.
    Wang G, Olofsson G (1998) Titration calorimetry study of the interaction between ionic surfactants and uncharged polymers in aqueous solution. J Phys Chem B 102:9276–9283CrossRefGoogle Scholar
  58. 58.
    Mao SZ, Du YR (2003) 1H NMR studies of surfactants in aqueous solutions. Acta Phys Chim Sin 19:675–680Google Scholar
  59. 59.
    Hawrylak BE, Marangoni DG (1999) A 2-D NMR investigation of the micellar solubilization site in ionic micellar solutions. Can J Chem 77:1241–1244Google Scholar

Copyright information

© AOCS 2011

Authors and Affiliations

  • Paresh Parekh
    • 1
  • Kulbir Singh
    • 2
  • D. Gerrard Marangoni
    • 2
  • Vinod K. Aswal
    • 3
  • Pratap Bahadur
    • 1
  1. 1.Department of ChemistryVeer Narmad South Gujarat UniversitySuratIndia
  2. 2.Department of ChemistryStFX UniversityAntigonishCanada
  3. 3.Solid State Physics DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations