Journal of Surfactants and Detergents

, Volume 14, Issue 4, pp 487–495 | Cite as

Surfactants Based on Bis-Galactobenzimidazolones: Synthesis, Self-Assembly and Ion Sensing Properties

  • L. Lakhrissi
  • N. Hassan
  • B. Lakhrissi
  • M. Massoui
  • E. M. Essassi
  • J. M. Ruso
  • C. Solans
  • C. Rodriguez- AbreuEmail author
Original Article


A series of new non-ionic amphiphiles based on bis-galactobenzimidazolones have been synthesized by grafting alkyl bis-benzimidazolone units as hydrophobic tails on hydroxypropyloxygalacto-pyranose moieties as hydrophilic heads. Their surface and self-aggregation properties in water were evaluated. The compounds show very low critical micellar concentrations (CMCs) that decrease with increasing chain length; values for the minimal area per molecule at the interface (A min) follow the same trend. The synthesized compounds also form hexagonal liquid crystals in water for a certain range of hydrophobic tail lengths. On the other hand, the new amphiphiles show characteristic UV–Vis absorption and fluorescence emission bands associated with the benzimidazolone moiety. The fluorescence emission is quenched with a certain degree of selectivity by cations, due to their strong affinity towards the benzimidazolone group, which shows ion complexation properties. Hence, the reported new amphiphiles are candidates as self-assembling chemosensors. The quenching efficiency and also ion sensing sensitivity is higher in the monomeric state as compared to the micellar state. The fluorescence emission intensity is higher for compounds with a shorter alkyl chain.


Bis-benzimidazolones d-Galactose Surfactant synthesis Non-ionic surfactants Surface properties Fluorescence probe spectroscopy 



This work was supported by CNRST-CSIC project (2007MA0055). The “Ministère Marocain de l’Enseignement Supérieur” is gratefully acknowledged. C.R-A is also grateful to the Ministerio de Ciencia e Innovación, Spain (Project CTQ2008-01979/BQU) for research funding. J.M.R and N. H. thank Direccion Xeral de Promoción Científica e Tecnológica del sistema Universitario de Galicia for their financial support.

Supplementary material

11743_2011_1262_MOESM1_ESM.pdf (474 kb)
Supplementary material 1 (PDF 473 kb)


  1. 1.
    Rodríguez-Abreu C, Aramaki K, Tanaka Y, Lopez-Quintela MA, Ishitobi M, Kunieda H (2005) Wormlike micelles and microemulsions in aqueous mixtures of sucrose esters and nonionic cosurfactants. J Colloid Interf Sci 291:560–569CrossRefGoogle Scholar
  2. 2.
    Rauter AP, Lucas S, Almeida T, Sacoto D, Ribeiro V, Justino J, Neves A, Silva FV, Oliveira MC, Ferreira MJ, Santos M-S, Barbosa E (2005) Synthesis, surface active and antimicrobial properties of new alkyl 2, 6-dideoxy-l-arabino-hexopyranosides. Carbohydr Res 340:191–201CrossRefGoogle Scholar
  3. 3.
    Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620CrossRefGoogle Scholar
  4. 4.
    Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121CrossRefGoogle Scholar
  5. 5.
    Różycka-Roszak B, Jurczak B, Wilk KA (2007) Effects of nonionic sugar surfactants on the phase transition of DPPC membranes. Thermochim Acta 453:27–30CrossRefGoogle Scholar
  6. 6.
    Ren X, Mao X, Cao L, Xue K, Si L, Qiu J, Schimmer AD, Li G (2009) Nonionic surfactants are strong inhibitors of cytochrome P450 3A biotransformation activity in vitro and in vivo. Eur J Pharm Sci 36:401–411CrossRefGoogle Scholar
  7. 7.
    Jiao J (2008) Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliver Rev 60:1663–1673CrossRefGoogle Scholar
  8. 8.
    Tracy DJ, Ruoxin L, Yang JY (1999) Nonionic Gemini surfactants having multiple hydrophobic and hydrophilic sugar groups. US Patent 5863886Google Scholar
  9. 9.
    Bais D, Trevisan A, Lapasin R, Partal P, Gallegos C (2005) Rheological characterization of polysaccharide-surfactant matrices for cosmetic O/W emulsions. J Colloid Interf Sci 290:546–556CrossRefGoogle Scholar
  10. 10.
    Ahsan F, Arnold JJ, Meezan E, Pillion DJ (2003) Sucrose cocoate, a component of cosmetic preparations, enhances nasal and ocular peptide absorption. Int J Pharm 251:195–203CrossRefGoogle Scholar
  11. 11.
    Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172:33–70CrossRefGoogle Scholar
  12. 12.
    Wu D-Q, Lu B, Chang C, Chen C-S, Wang T, Zhang Y-Y, Cheng S-X, Jiang X-J, Zhang X-Z, Zhuo R-X (2009) Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials 30:1363–1371CrossRefGoogle Scholar
  13. 13.
    Nakamura N, Yamaguchi Y, Hakansson B, Olsson U, Tagawa T, Kunieda H (1999) Formation of microemulsion and liquid crystal in biocompatible sucrose alkanoate systems. J Disper Sci Technol 20:535–557CrossRefGoogle Scholar
  14. 14.
    Stradner A, Mayer B, Sottmann T, Hermetter A, Glatter O (1999) Sugar surfactant-based solutions as host systems for enzyme activity measurements. J Phys Chem B 103:6680–6689CrossRefGoogle Scholar
  15. 15.
    Castro MJL, Kovensky J, Fernández-Cirelli A (2002) New family of nonionic gemini surfactants. Determination and analysis of interfacial properties. Langmuir 18:2477–2482CrossRefGoogle Scholar
  16. 16.
    Terefenko EA, Kern J, Fensome A, Wrobel J, Zhu Y, Cohen J, Winneker R, Zhang Z, Zhang P (2005) SAR studies of 6-aryl-1,3-dihydrobenzimidazol-2-ones as progesterone receptor antagonists. Bioorg Med Chem Lett 15:3600–3603CrossRefGoogle Scholar
  17. 17.
    Monforte AM, Rao A, Logoteta P, Ferro S, De Luca L, Barreca ML, Iraci N, Maga G, De Clercq E, Pannecouque C, Chimirri A (2008) Novel N1-substituted 1,3-dihydro-2H-benzimidazol-2-ones as potent non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 16:7429–7435CrossRefGoogle Scholar
  18. 19.
    Li S-K, Ji Z-Q, Zhang J-W, Guo Z-Y, Wu W-J (2010) Synthesis of 1-Acyl-3-isopropenylbenzimidazolone derivatives and their activity against Botrytis cinerea. J Agric Food Chem 58:2668–2672CrossRefGoogle Scholar
  19. 20.
    Meth-Cohn O, Smith DI (1982) N-bridged heterocycles. Part 5.α,ω-bis-(2-oxobenzimidazolinyl)-alkanes and -ethers as selective ligands for group-1 and -2 metals, J Chem Soc Perkin I 261–270Google Scholar
  20. 21.
    Lazar Z, Benali B, Elblidi K, Zenkouar M, Lakhrissi B, Massoui M, Kabouchi B, Cazeau-Dubroca C (2003) Photophysical study of benzimidazolone and its derivative molecules in solution. J Mol Liq 106(1):89–95CrossRefGoogle Scholar
  21. 22.
    Benali B, Lazar Z, Elblidi K, Lakhrissi B, Massoui M, Elassyry A, Cazeau-Dubroca C (2006) Solvatochromic effect on photophysical properties of benzimidazolone. J Mol Liq 128:42–45CrossRefGoogle Scholar
  22. 23.
    Mancin F, Rampazzo E, Tecilla P, Tonellato U (2006) Self-assembled fluorescent chemosensors. Chem Eur J 12:1844–1854CrossRefGoogle Scholar
  23. 24.
    El Majzoub A, Cadiou C, Déchamps-Olivier I, Chuburu F, Aplincourt M, Tinant B (2009) Mono- and bis-N-functionalised cyclen with benzimidazolylmethyl pendant arms: sensitive and selective fluorescent probes for zinc and copper ions. Inorg Chim Acta 362:1169–1178CrossRefGoogle Scholar
  24. 25.
    Pina F, Bernardo MA, García-España E (2000) Fluorescent chemosensors containing polyamine receptors. Eur J Inorg Chem 2143–2157Google Scholar
  25. 26.
    Lakhrissi B, Ejjiyar S, Massoui M, Comelles F, Garcia MT, Ribosa I, Azemar N, Solans C (2002) Surface and self-aggregation properties of bis-benzimidazolone derivatives of d-glucose. Jorn Com Esp Deterg 32:365–373Google Scholar
  26. 27.
    Lakhrissi L, Lakhrissi B, Lakhrissi M, Massoui M, Essassi EM, Solans C, Azemar N, Morales D, Comelles F (2007) Synthesis and evaluation of surfactants properties of new amphiphile and bolaamphiphile derivatives of bis-glucobenzimidazolones. Jorn Com Esp Deterg 37:347–353Google Scholar
  27. 28.
    Lakhrissi B, Benksim A, Massoui M, Essassi EM, Lequart V, Joly N, Beaupère D, Wadouachi A, Martin P (2008) Towards the synthesis of new benzimidazolone derivatives with surfactant properties. Brahim Lakhrissi. Carbohydr Res 343:421–433CrossRefGoogle Scholar
  28. 29.
    Lakhrissi B, Lakhrissi L, Massoui M, Essassi EM, Comelles F, Esquena J, Solans C, Rodriguez-Abreu C (2010) Surface and self-aggregation properties of bis-benzimidazolones derivatives of d-glucose. J Surfact Deterg 13:329–338CrossRefGoogle Scholar
  29. 30.
    Goueth PY, Ronco G, Villa P (1994) Synthesis of novel bis(glycosyl) ethers as bolaamphiphile surfactants. J Carbohydr Chem 13:679–696CrossRefGoogle Scholar
  30. 31.
    Lakhrissi B, Essassi EM, Massoui M, Goethals G, Lequart V, Monflier E, Cecchelli R, Martin P (2004) Synthesis and amphiphilic behavior of N, N-bis-glucosyl-1,5-benzodiazepin-2,4-dione. J Carbohydr Chem 23:389–401CrossRefGoogle Scholar
  31. 32.
    Köll P, Saak W, Pohl S, Steiner B, Miroslav Koos M (1994) Preparation and crystal and molecular structure of 6-O-[(2S)-2, 3-epoxypropyl]-1,2:3,4-di-O-isopropylidene-α-d galacto-pyranose. Pyranoid ring conformation in 1,2:3,4-di-O-isopropylidene galactopyranose and related systems. Carbohyd Res 265:237–248CrossRefGoogle Scholar
  32. 33.
    Baggett N, Buck KW, Foster AB, Jefferis R, Rees BH, Webber JM (1965) Aspects of stereochemistry. Part XIX. Isopropylidene derivatives of some polyhydric alcohols. Observations on the hydrolytic behaviour and migration of cyclic ketals. J Chem Soc 3382–3387Google Scholar
  33. 34.
    Rosen MJ (1989) Surfactant and interfacial phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  34. 35.
    Lu JR, Thomas RK, Penfold J (2000) Surfactant layers at the air/water interface: structure and composition. Adv Colloid Interf Sci 143–304Google Scholar
  35. 36.
    Fabbrizzi L, Licchelli M, Pallavicini P, Perotti A, Taglietti A, Sacchi D (1996) Fluorescent sensors for transition metals based on electron-transfer and energy-transfer mechanisms. Chem Eur J 2:75–82CrossRefGoogle Scholar
  36. 37.
    Zhou LL, Sun H, Zhang XH, Wu SK (2005) An effective fluorescent chemosensor for the detection of copper(II). Spectrochim Acta A 61:61–65CrossRefGoogle Scholar
  37. 38.
    Stern O, Volrner M (1919) The fading time of fluorescence. Z Phys 20:183–188Google Scholar
  38. 39.
    Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170CrossRefGoogle Scholar
  39. 40.
    Tan C, Pinto MR, Schanze KS (2002) Photophysics, aggregation and amplified quenching of a water-soluble poly(phenylene ethynylene). Chem Commun 446–447Google Scholar
  40. 41.
    Pu S, Li M, Fan C, Liu G, Shen L (2009) Synthesis and the optoelectronic properties of diarylethene derivatives having benzothiophene and n-alkyl thiophene units. J Mol Struct 919:100–111CrossRefGoogle Scholar
  41. 42.
    Iwunze MO, Lambert M, Silversmith EF (1997) Characterization of fluorescent surfactant aggregates by fluorimetric and viscosimetric techniques. Monatsh Chem 128:585–592CrossRefGoogle Scholar

Copyright information

© AOCS 2011

Authors and Affiliations

  • L. Lakhrissi
    • 1
    • 2
  • N. Hassan
    • 3
  • B. Lakhrissi
    • 1
  • M. Massoui
    • 2
  • E. M. Essassi
    • 2
  • J. M. Ruso
    • 3
  • C. Solans
    • 4
  • C. Rodriguez- Abreu
    • 4
    • 5
    Email author
  1. 1.Laboratoire d’Agroressources et Génie des Procédés, Faculté des SciencesUniversité Ibn TofaïlKénitraMorocco
  2. 2.Laboratoire de Chimie Hétérocyclique, Faculté des SciencesUniversité Mohamed VRabatMorocco
  3. 3.Soft Matter and Molecular Biophysics Group, Department of Applied PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  4. 4.Institut de Química Avançada de Catalunya (IQAC)Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
  5. 5.International Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations