Journal of Surfactants and Detergents

, Volume 14, Issue 1, pp 51–63 | Cite as

Synthesis and Surface-Active Properties of Uronic Amide Derivatives, Surfactants from Renewable Organic Raw Materials

  • Pascal Laurent
  • Hary Razafindralambo
  • Bernard Wathelet
  • Christophe Blecker
  • Jean-Paul Wathelet
  • Michel Paquot
Original Article


Short chemical syntheses were developed to produce a new set of surfactants from uronic acids derived from widely available raw materials. Three different strategies were used to synthesize uronic amide derivatives, the structures of which were totally characterized by spectrometric methods (IR, MS, 1H-RMN and 13C-RMN). The best one, using an acid chloride as the synthetic intermediate, furnished the expected amides as a mixture of anomers in 46–58% global yield. Surface-active properties (CMC, γcmc, Γmax, Amin) of homologous series of uronic acid N-alkylamides from C8 to C18 were also assessed. In general, these sugar-based surfactants exhibited good surface-activities, and appeared as valuable nonionic surfactants compared to octylphenol 9–10 ethylene oxide condensate, the most well-known nonionic surfactant. Increasing the alkyl chain length influenced the CMC values for both glucuronic and galacturonic N-alkylamide derivatives. The galacturonic N-alkylamides decreased γcmc at slower values than their counterpart’s glucuronic N-alkylamides.


Uronic acid Amide formation Carbohydrates Critical micellar concentration Surface tension 



Correlation spectroscopy


Dicyclohexyl carbodiimide


Dimethyl formamide


Dimethyl sulfoxide


Electrospray ionisation mass spectrometry


Heteronuclear multiple bond correlation


Heteronuclear single quantum correlation


Nuclear Overhauser effect spectroscopy


Thin layer chromatography




  1. 1.
    Timoshchuk VA (1995) Uronic acids: synthesis and reactions. Rus Chem Rev 64:675–703CrossRefGoogle Scholar
  2. 2.
    Allen DG, Tao BY (1999) Carbohydrate-alkyl ester derivatives as biosurfactants. J Surfact Detergents 2:383–390CrossRefGoogle Scholar
  3. 3.
    Queneau Y, Chambert S, Besset C, Cheaib R (2008) Recent progress in the synthesis of carbohydrate-based amphiphilic materials: the examples of sucrose and isomaltulose. Carbohydr Res 343:1999–2009CrossRefGoogle Scholar
  4. 4.
    Sun R, Lawther JM, Banks WB (1996) Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr Polym 29:325–331CrossRefGoogle Scholar
  5. 5.
    Jarvis MC, Forsyth W, Duncan H (1988) A survey of the pectic content of nonlignified monocot cell walls. J Plant Physiol 88:309–314CrossRefGoogle Scholar
  6. 6.
    Razafindralambo H, Blecker C, Mezdour S, Deroanne C, Crowet JM, Brasseur R, Lins L, Paquot M (2009) Impacts of the carbonyl group location of ester bond on interfacial properties of sugar-based surfactants: experimental and computational evidences. J Phys Chem B 113:8872–8877CrossRefGoogle Scholar
  7. 7.
    Blecker C, Picciuto S, Lognay G, Deroanne C, Marlier M, Paquot M (2002) Enzymatically prepared n-alkyl esters of glucuronic acid: the effect of hydrophobic chain length on surface properties. J Colloid Interface Sci 247:424–428CrossRefGoogle Scholar
  8. 8.
    Moreau B, Lognay G, Blecker C, Brohée JC, Chéry F, Rollin P, Paquot M, Marlier M (2004) Synthesis of novel d-glucuronic acid fatty esters using Candida antartica lipase in tert-butanol. Biotechnol Lett 26:419–424CrossRefGoogle Scholar
  9. 9.
    Moreau B, Lognay G, Blecker C, Destain J, Gerbaux P, Chéry F, Rollin P, Paquot M, Marlier M (2007) Chromatographic, Spectrometric and NMR Characterization of a New Set of Glucuronic Acid Esters Synthesized by Lipase. Biotechnol Agron Soc Environ 11:9–17Google Scholar
  10. 10.
    Blecker C, Danthine S, Petre M, Lognay G, Moreau B, Vander Elst L, Paquot M, Deroanne C (2008) Enzymatically prepared n-alkyl esters of glucuronic acid: the effect of freeze-drying conditions and hydrophobic chain length on thermal behaviour. J Colloid Interface Sci 321:154–158CrossRefGoogle Scholar
  11. 11.
    Fieser M, Fieser LF, Toromanoff E, Hirata Y, Heymann H, Tefft M, Bhattacharya S (1956) Synthetic emulsifying agents. J Am Chem Soc 78:2825–2832CrossRefGoogle Scholar
  12. 12.
    Falkowski L, Stefanska B, Bylec E, Kolodziejczyk P (1980) An improved method of synthesis of glucuronamides. Polymer J Chem 54:599–603Google Scholar
  13. 13.
    Vogel C, Jeschke U, Vill V, Fisher H (1992) d-galacturonic acid derivatives with liquid crystalline properties. Liebiegs Annalen der Chemie 11:1171–1177CrossRefGoogle Scholar
  14. 14.
    Perrin DD, Armarego WLF (1988) Purification of laboratory chemicals, 3rd edn. Pergamon Press Oxford, New YorkGoogle Scholar
  15. 15.
    Sumner J, Howell S (1935) A method for determination of saccharase activity. J Biol Chem 108:51–54Google Scholar
  16. 16.
    Razafindralambo H, Blecker C, Delhaye S, Paquot M (1995) Application of the quasi-static mode of the drop volume technique to the determination of fundamental surfactant properties. J Colloid Interface Sci 174:373–377CrossRefGoogle Scholar
  17. 17.
    Boons GJ, Hale KJ (2000) Organic synthesis with carbohydrates; postgraduate chemistry series. Sheffield Academic Press, SheffieldGoogle Scholar
  18. 18.
    Tosin M, Murphy PV (2002) Synthesis of α-glucuronic acid and amide derivatives in the presence of a participating 2-acyl protecting group. Org Lett 4:3675–3678CrossRefGoogle Scholar
  19. 19.
    Tosin M, O’Brien C, Fitzpatrick GM, Müller-Bunz H, Kenneth Glass W, Murphy PV (2005) Synthesis and structural analysis of the anilides of glucuronic acid and orientation of the groups on the carbohydrate scaffolding. J Org Chem 70:4096–4106CrossRefGoogle Scholar
  20. 20.
    Goffin D, Bystricky P, Shashkov AS, Lynch M, Hanon E, Paquot M, Savage A (2009) A systematic NMR determination of α-d-glucooligosaccharides, effect of linkage type, anomeric configuration and combination of different linkages type on 13C chemical shifts for the determination of unknown isomaltooligosaccharides. Bull Korean Chem Soc 30:1–7CrossRefGoogle Scholar
  21. 21.
    Kuo JW, Swann DA, Prestwich GD (1991) Chemical modification of hyaluronic acid by carbodiimides. Bioconjug Chem 2:232–241CrossRefGoogle Scholar
  22. 22.
    Follain N, Montanari S, Jeacomine I, Gambarelli S, Vignon MR (2008) Coupling of amines with polyglucuronic acid: evidence for amide bond formation. Carbohydr Polymers 74:333–343CrossRefGoogle Scholar
  23. 23.
    Baddeley TC, Howie RA, Skakle JMS, Wardell JL (2005) 1,2,3,4-Tetra-O-acetyl-β-D-glucopyranuronic acid monohydrate at 120 K and anhydrous 1,2,3,4-tetra-O-acetyl-β-D-glucopyranose at 292 K. Acta Cryst C61:o711–o714Google Scholar
  24. 24.
    Ward DE, Rhee CK (1991) A simple method for the microscale preparation of Mosher’s acid chloride. Tet Lett 32:7165–7166CrossRefGoogle Scholar
  25. 25.
    Boyd B, Drummond C, Krodkiewska I, Grieser F (2000) How chain length, headgroup polymerization, and anomeric configuration govern the thermotropic and lyotropic liquid crystalline phase behaviour and the air- water interfacial adsorption of glucose-based surfactants. Langmuir 16:7359–7367CrossRefGoogle Scholar

Copyright information

© AOCS 2010

Authors and Affiliations

  • Pascal Laurent
    • 1
    • 2
  • Hary Razafindralambo
    • 3
  • Bernard Wathelet
    • 1
  • Christophe Blecker
    • 3
  • Jean-Paul Wathelet
    • 2
  • Michel Paquot
    • 1
  1. 1.Unit of Biological and Industrial Chemistry, Gembloux Ago-Bio TechUniversity of LiegeGemblouxBelgium
  2. 2.Unit of General and Organic Chemistry, Gembloux Ago-Bio TechUniversity of LiegeGemblouxBelgium
  3. 3.Unit of Food Technology, Gembloux Agro-Bio TechUniversity of LiegeGemblouxBelgium

Personalised recommendations