Journal of Surfactants and Detergents

, Volume 12, Issue 3, pp 249–259

Synthesis and Properties of Gemini-type Cationic Surfactants Containing Carbonate Linkages in the Linker Moiety Directed Toward Green and Sustainable Chemistry

  • Taisuke Banno
  • Kazunobu Toshima
  • Kazuo Kawada
  • Shuichi Matsumura
Original Article


Gemini-type cationic surfactants containing carbonate linkages as biodegradable and chemically recyclable segments, consisting of two long-chain alkyl groups, two quaternary ammonium groups and a linker moiety, were designed and synthesized as novel green and sustainable cationics with improved physicochemical and biological activities. The gemini-type cationics containing a carbonate linkage showed lower critical micelle concentration values compared to the corresponding single-type cationics. Also, the gemini-type cationics containing a carbonate linkage in the linker moiety showed strong antimicrobial activities. The biodegradability of the gemini-type cationics was significantly improved when a carbonate linkage was introduced into the linker moiety. The maximum biochemical oxygen demand-biodegradability of the gemini-type cationics containing a carbonate linkage in the linker moiety exceeded 70% after a 28-day incubation. Furthermore, the gemini-type cationics containing both a carbonate linkage and an n-dodecyl group showed a chemical recyclability using a lipase (E.C.


Antimicrobial activity Biodegradability Carbonate linkage Chemical recycling Gemini-type cationic surfactant Lipase Surface activity 


  1. 1.
    Rosen MJ (1993) Geminis: a new generation of surfactants. Chemtech 23:30–33Google Scholar
  2. 2.
    Menger FM, Littau CA (1993) Gemini surfactants: a new class of self-assembling molecules. J Am Chem Soc 115:10083–10090CrossRefGoogle Scholar
  3. 3.
    Zana R (2002) Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci 248:203–220CrossRefGoogle Scholar
  4. 4.
    Zana R (2002) Dimeric and oligomeric surfactants. behavior at interfaces and in aqueous solution: a review. Adv Colloid Interface Sci 97:205–253CrossRefGoogle Scholar
  5. 5.
    Aisaka T, Oida T, Kawase T (2007) A novel synthesis of succinic acid type gemini surfactant by the functional group interconversion of corynomicolic acid. J Oleo Sci 56:633–644Google Scholar
  6. 6.
    Bunton CA, Robinson L, Schaak J, Stam MF (1971) Catalysis of nucleophilic substitutions by micells of dicationic detergents. J Org Chem 36:2346–2350CrossRefGoogle Scholar
  7. 7.
    Devínsky F, Masárová L, Lacko I (1985) Surface activity and micelle formation of some new bisquaternary ammonium salts. J Colloid Interface Sci 105:235–239CrossRefGoogle Scholar
  8. 8.
    Devínsky F, Lacko I, Bittererová F, Tomečková L (1986) Relationship between structure, surface activity, and micelle formation of some new bisquaternary isosteres of 1, 5-pentanediammonium dibromides. J Colloid Interface Sci 114:314–322CrossRefGoogle Scholar
  9. 9.
    Laska U, Wilk KA, Maliszewska I, Syper L (2006) Novel glucose-derived gemini surfactants with a 1, 1′-ethylenebisurea spacer: preparation, thermotropic behavior, and biological properties. J Surfact Deterg 9:115–124CrossRefGoogle Scholar
  10. 10.
    Wilk KA, Syper L, Domagalska BW, Komorek U, Maliszewska I, Gancarz R (2002) Aldonamide-type gemini surfactants: synthesis, structural analysis, and biological properties. J Surfact Deterg 5:235–244CrossRefGoogle Scholar
  11. 11.
    Wagenaar A, Engberts JBFN (2007) Synthesis of nonionic reduced-sugar based bola amphiphiles and gemini surfactants with an α, ω-diamino-(oxa)alkyl spacer. Tetrahedron 63:10622–10629CrossRefGoogle Scholar
  12. 12.
    Pestman JM, Terpstra KR, Stuart MCA, van Doren HA, Brisson A, Kellogg RM, Engberts JBFN (1997) Nonionic bolaamphiphiles and gemini surfactants based on carbohydrates. Langmuir 13:6857–6860CrossRefGoogle Scholar
  13. 13.
    Fielden ML, Perrin C, Kremer A, Bergsma M, Stuart MC, Camilleri P, Engberts JBFN (2001) Sugar-based tertiary amino gemini surfactants with a vesicle-to-micelle transition in the endosomal pH range mediate efficient transfection in vitro. Eur J Biochem 268:1269–1279CrossRefGoogle Scholar
  14. 14.
    Ono D, Yamamura S, Nakamura M, Takeda T (2005) Preparation and properties of bis(sodium sulfate) types of cleavable surfactants derived from diethyl tartrate. J Oleo Sci 54:51–57Google Scholar
  15. 15.
    Pérez L, Torres JL, Manresa A, Solans C, Infante MR (1996) Synthesis, aggregation, and biological properties of a new class of gemini cationic amphiphilic compounds from arginine, bis (args). Langmuir 12:5296–5301CrossRefGoogle Scholar
  16. 16.
    Tsatsaroni E, Pegiadou-Koemtjopoulou S, Demertzis G (1987) Synthesis and properties of new cationic surfactants. 2. Odd homogous members. J Am Oil Chem Soc 64:1444–1447CrossRefGoogle Scholar
  17. 17.
    Fernández P, Valls M, Bayona JM, Albalgés J (1991) Occurrence of cationic surfactants and related products in urban coastal environments. Environ Sci Technol 25:547–550CrossRefGoogle Scholar
  18. 18.
    Banno T, Toshima K, Kawada K, Matsumura S (2007) Synthesis and properties of biodegradable and chemically recyclable cationic surfactants containing carbonate linkages. J Oleo Sci 56:493–499Google Scholar
  19. 19.
    Roosjen A, Šmisterová J, Driessen C, Anders JT, Wagenaar A, Hoekstra D, Hulst R, Engberts JBFN (2002) Synthesis and characteristics of biodegradable pyridinium amphiphiles used for in vitro DNA delivery. Eur J Org Chem 2002:1271–1277CrossRefGoogle Scholar
  20. 20.
    Stjerndahl M, Holmberg K (2005) Hydrolyzable nonionic surfactants: stability and physicochemical properties of surfactants containing carbonate, ester, and amide bonds. J Colloid Interface Sci 291:570–576CrossRefGoogle Scholar
  21. 21.
    Alami E, Beinert G, Marie P, Zana R (1993) Alkanediyl-α, ω-bis(dimethylalkyl-ammonium bromide) surfactants. 3. Behavior at the air–water interface. Langmuir 9:1465–1467CrossRefGoogle Scholar
  22. 22.
    Esumi K, Taguma K, Koide Y (1996) Aqueous properties of multichain quaternary cationic surfactants. Langmuir 12:4039–4041CrossRefGoogle Scholar
  23. 23.
    Yano W, Kimura W (1962) Studies on the evaluation methods of surface active agents. 2. Foam test: semimicro improved TK-method. Yukagaku 11:138–144Google Scholar
  24. 24.
    Organization for Economic Cooperation, Development (OECD) (1981) OECD guidelines for testing of chemicals, 301C modified MITI test. OECD, ParisGoogle Scholar
  25. 25.
    Bristline RG Jr, Maurer EW, Smith FD, Linfield WM (1980) Fatty acid amides and anilides, syntheses and antimicrobial properties. J Am Oil Chem Soc 57:98–103CrossRefGoogle Scholar
  26. 26.
    Zhu YP, Ishihara K, Masuyama A, Nakatsuji Y, Okahara M (1993) Preparation and properties of double-chain bis(quaternary ammonium) compounds. Yukagaku 42:161–167Google Scholar
  27. 27.
    Kim TS, Kida T, Nakatsuji Y, Hirao T, Ikeda I (1996) Surface-active properties of novel cationic surfactants with two alkyl chains and two ammonio groups. J Am Oil Chem Soc 73:907–911CrossRefGoogle Scholar
  28. 28.
    Zana R (1996) Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 12:1208–1211CrossRefGoogle Scholar
  29. 29.
    Laschewsky A, Wattebled L, Arotcaréna M, Habib-Jiwan JL, Rakotoaly RH (2005) Synthesis and properties of cationic oligomeric surfactants. Langmuir 21:7170–7179CrossRefGoogle Scholar
  30. 30.
    Tehrani-Bagha AR, Oskarsson H, Ginkel CG, Holmberg K (2007) Cationic ester-containing gemini surfactants: chemical hydrolysis and biodegradation. J Colloid Interface Sci 312:444–452CrossRefGoogle Scholar
  31. 31.
    Tatsumi T, Zhang W, Kida T, Nakatsuji Y, Ono D, Takeda T, Ikeda I (2000) Novel hydrolyzable and biodegradable cationic gemini surfactants: 1, 3-bis[(acyloxyalkyl)-dimethylammonio]-2-hydroxypropane dichloride. J Surfact Deterg 3:167–172CrossRefGoogle Scholar
  32. 32.
    Tatsumi T, Zhang W, Kida T, Nakatsuji Y, Ono D, Takeda T, Ikeda I (2001) Novel hydrolyzable and biodegradable cationic gemini surfactants: bis(ester-ammonium) dichloride having a butenylene or a butynylene spacer. J Surfact Deterg 4:279–285CrossRefGoogle Scholar
  33. 33.
    Willemen HM, de Smet LCPM, Koudijs A, Stuart MCA, Heikamp-de Jong IGAM, Marcelis ATM, Sudhölter EJR (2002) Micelle formation and antimicrobial activity of cholic acid derivatives with three permanent ionic head groups. Angew Chem Int Ed 41:4275–4277CrossRefGoogle Scholar

Copyright information

© AOCS 2009

Authors and Affiliations

  • Taisuke Banno
    • 1
  • Kazunobu Toshima
    • 1
  • Kazuo Kawada
    • 2
  • Shuichi Matsumura
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
  2. 2.Department of Chemistry, School of ScienceKitasato UniversitySagamiharaJapan

Personalised recommendations