Journal of Surfactants and Detergents

, Volume 12, Issue 2, pp 155–164 | Cite as

A 1D- and 2D-NMR Study of an Anionic Surfactant/Neutral Polymer Complex

Original Article


NMR chemical shifts and linewidth measurements were examined for mixtures of sodium 10-phenyldecanoate (Na ω-PhDec) in deuterated aqueous solutions in the presence of varying compositions of poly(ethylene oxide) (PEO) polymers of 2000 and 4000 molecular weight. In addition, variable temperature NMR spectra and NMR spin lattice relaxation times (T1) were obtained for the PEO-4000/Na ω-PhDec system as a function of varying polymer concentrations. As expected, the polymer/surfactant systems exhibit the behaviour typical of that of an anionic surfactant/neutral polymer system with well defined critical aggregation concentrations (CMC) corresponding to the formation of polymer/surfactant complexes below the CMC of the free surfactant. The 1H-NMR linewidths acquired for the Na ω-PhDec/PEO-4000 system before and after the CMC region of the surfactant indicate that the maximum in the linewidth of the PEO proton peak is reached at approximately twice the CMC of the free surfactant. 2D-NMR NOESY measurements on this system exhibit cross peaks between the PEO protons and the protons on the surfactant backbone, consistent with the location of the phenyl group in the micellar interior. All these NMR experiments are interpreted in terms of the structure of the polymer/surfactant complexes as a function of the system composition.


Anionic surfactants Application of surfactants Interfacial science 


  1. 1.
    Hayakawa K, Nakano T, Satake I, Kwak JCT (1996) Energy transfer between pyrene and proflavine solubilized in polymer/surfactant complexes. Langmuir 12:269–275CrossRefGoogle Scholar
  2. 2.
    Bloor D, Mwakibete HKO, Wyn-Jones E (1996) EMF studies associated with the binding of cetyltrimethylammonium bromide to the polymers poly (propylene oxide), poly (vinylmethylether), and ethyl (hydroxyethyl) cellulose. J Colloid Interface Sci 178:334–338CrossRefGoogle Scholar
  3. 3.
    Hayakawa K, Satake I, Kwak JCT, Gao Z (1990) Spectroscopy of Rhodamine 6G Solubilized in complexes of anionic polymers with cationic surfactant. Colloids Surf 50:309–320CrossRefGoogle Scholar
  4. 4.
    Hayakawa K, Kwak JCT (1982) Surfactant-polyelectrolyte interactions. 1. Binding of dodecyltrimethylammonium Ions by sodium dextran sulfate and sodium poly(styrene sulfonate) in aqueous solution in the presence of sodium chloride. J Phys Chem 86:3866–3870CrossRefGoogle Scholar
  5. 5.
    Widom B, Bhimalapuram P, Koga K (2003) The hydrophobic effect. Phys Chem Chem Phys 5:3085–3093CrossRefGoogle Scholar
  6. 6.
    Shimizu S, Pires PAR, El Seoud OA (2003) H-1 and C-13 NMR study on the aggregation of (2-acylaminoethyl)trimethylammonium chloride surfactants in D2O. Langmuir 19:9645–9652CrossRefGoogle Scholar
  7. 7.
    Soderman O, Guering P (1987) On the determination of micellar aggregation numbers from the concentration dependence of 13C NMR chemical shifts. Colloid Polym Sci 265:76–82CrossRefGoogle Scholar
  8. 8.
    Persson B, Drakenberg T, Lindman B (1979) 13C NMR of micellar solutions. Micellar aggregation number from the concentration dependence of the 13C chemical shifts. J Phys Chem 83:3011–3015CrossRefGoogle Scholar
  9. 9.
    Gao Z, Wasylishen RE, Kwak JCT (1989) An NMR paramagnetic relaxation method to determine distribution coefficients of solubllizates in micellar systems. J Phys Chem 93:2190–2192CrossRefGoogle Scholar
  10. 10.
    McMahon CA, Hawrylak B, Marangoni DG, Palepu R (1999) Calorimetric and NMR investigations of the micellar properties of sodium dodecyl sulfate in aqueous mixtures of isomeric butanediols. Langmuir 15:429–436CrossRefGoogle Scholar
  11. 11.
    MacInnis JA, Palepu R, Marangoni DG (1999) A nuclear magnetic resonance investigation of the micellar properties of a series of sodium cyclohexylalkanoates. Can J Chem 77:1994–2000CrossRefGoogle Scholar
  12. 12.
    Boucher GD, MacDonald AC, Hawrylak BE, Marangoni DG (1998) A nuclear magnetic resonance investigation of the micellar properties of two-headed surfactant systems: the disodium 4-alkyl-3-sulfonatosuccinates. 1. Equilibrium micellar properties. Can J Chem 76:1266–1273CrossRefGoogle Scholar
  13. 13.
    Chachaty C (1987) Applications of NMR methods to the physical chemistry of micellar solutions. Progess NMR Spectroscopy 19:183–222CrossRefGoogle Scholar
  14. 14.
    Goddard ED, Ananthapadmanabhan KP (1993) Interactions of surfactants with polymers and proteins. CRC Press Goddard, E.D Boca Raton, FlaGoogle Scholar
  15. 15.
    Gao Z, Wasylishen RE, Kwak JCT (1990) NMR studies in surfactant polymer-surfactant systems: Micelle formation of sodium w-phenyldecanoate and interaction with poly(ethylene oxide). J Colloid Interface Sci 137:137–146CrossRefGoogle Scholar
  16. 16.
    Ramachandran R, Kennedy GJ (1991) NMR investigation of the Peo-Sds aggregate. Colloids Surf 54:261–266CrossRefGoogle Scholar
  17. 17.
    Gao Z, Wasylishen RE, Kwak JCT (1991) Distribution equilibrium of poly (ethylene oxide) in sodium dodecyl sulfate micellar solutions: An NMR paramagnetic relaxation study. J Phys Chem 95:462–467CrossRefGoogle Scholar
  18. 18.
    Pettersson E, Topgaard D, Stilbs P, Söderman O (2004) Surfactant/nonionic polymer interaction. A NMR diffusometry and NMR electrophoretic investigation. Langmuir 20:1138CrossRefGoogle Scholar
  19. 19.
    de Alvarenga ES, Lima CF, Denadai AML (2004) Study of aqueous solution of sodium dodecyl sulfate and polyethylene oxide 10000 by NMR NOESY. Z Naturforschung A 59:291–294Google Scholar
  20. 20.
    Yuan HZ, Luo L, Zhang L, Zhao S, Mao SZ, Yu JY, Shen LF, Du YR (2002) Aggregation of sodium dodecyl sulfate in poly(ethylene glycol) aqueous solution studied by H-1 NMR spectroscopy. Colloid Polym Sci 280:479–484CrossRefGoogle Scholar
  21. 21.
    Gjerde MI, Nerdal W, Hoiland H (1998) Interactions between poly(ethylene oxide) and sodium dodecyl sulfate as studied by NMR, conductivity, and viscosity at 283.1–298.1 K. J Colloid Interface Sci 197:191–197CrossRefGoogle Scholar
  22. 22.
    Wang G, Olofsson G (1998) Titration calorimetry study of the interaction between ionic surfactants and uncharged polymers in aqueous solution. J Phys Chem B 102:9276–9283CrossRefGoogle Scholar
  23. 23.
    Wang Y, Han B, Yan H (1998) Interaction between poly(ethylene oxide) and dodecyl sulfates with different monovalent metal counterions studied by microcalorimetry. Langmuir 14:6054–6058CrossRefGoogle Scholar
  24. 24.
    Dai S, Tam KC (2006) Isothermal titration calorimetric studies on the interaction between sodium dodecyl sulfate and polyethylene glycols of different molecular weights and chain architectures. Colloids Surf A 289:200–206CrossRefGoogle Scholar
  25. 25.
    Dai S, Tam KC (2005) Laser light scattering and isothermal titration calorimetric studies of poly(ethylene oxide) aqueous solution in presence of sodium dodecyl sulfate. J Colloid Interface Sci 292:79–85CrossRefGoogle Scholar
  26. 26.
    da Silva RC, Loh W, Olofsson G (2004) Calorimetric investigation of temperature effect on the interaction between poly(ethylene oxide) and sodium dodecylsulfate in water. Thermochimica Acta 417:295–300CrossRefGoogle Scholar
  27. 27.
    Ballerat-Busserolles K, Roux-Desgranges G, Roux AH (1997) Thermodynamics in micellar solutions: confirmation of complex formation between sodium dodecyl sulfate and polyethylene glycol. Langmuir 13:1946–1951CrossRefGoogle Scholar
  28. 28.
    Shang BZ, Wang ZW, Larson RG (2008) Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer. J Phys Chem B 112:2888–2900CrossRefGoogle Scholar
  29. 29.
    Cao M, Hai MT (2006) Investigation on the interaction between sodium dodecyl sulfate and polyethylene glycol by electron spin resonance, ultraviolet spectrum, and viscosity. J Chem Eng Data 51:1576–1581CrossRefGoogle Scholar
  30. 30.
    Rizzatti IM, Zanette DR, Zanette D (2004) Construction of surfactant-membrane electrodes selective for sodium dodecyl sulfate in poly(ethylene oxide)-surfactant mixtures. J Brazilian Chem Soc 15:491–495Google Scholar
  31. 31.
    Dhara D, Shah D (2001) Effect of poly(ethylene glycol)s in micellar stability of sodium dodecyl sulfate. Langmuir 17:7233–7236CrossRefGoogle Scholar
  32. 32.
    Kim JH, Domach MM, Tilton RD (1999) Pyrene micropartitioning and solubilization by sodium dodecyl sulfate complexes with poly(ethylene glycol). J Phys Chem B 103:10582–10590CrossRefGoogle Scholar
  33. 33.
    Cooke DJ, Dong CC, Lu JR, Thomas RK, Simister EA, Penfold J (1998) Interaction between poly(ethylene oxide) and sodium dodecyl sulfate studied by neutron reflection. J Phys Chem B 102:4912–4917CrossRefGoogle Scholar
  34. 34.
    Cabane B (1981) Structure of the water/surfactant interface in micelles: an NMR study of SDS micelles labelled with paramagnetic ions. Journal de Physique 42:847–859CrossRefGoogle Scholar
  35. 35.
    Brackman JC, Engberts JBFN (1993) Polymer micelle interactions—physical organic aspects. Chem Soc Rev 22:85–92CrossRefGoogle Scholar
  36. 36.
    Brackman JC, Engberts JBFN (1992) Effect of surfactant charge on polymer–micelle interaction: n-dodecyldimethylamine oxide. Langmuir 8:424–428CrossRefGoogle Scholar
  37. 37.
    Brackman JC, Engberts JBFN (1989) The effect of surfactant headgroup charge on polymer micelle interaction. J Colloid Interface Sci 132:250–255CrossRefGoogle Scholar
  38. 38.
    Gjerde MI, Nerdal W, Hoiland H (1996) A NOESY NMR study of the interaction between sodium dodecyl sulfate and poly(ethylene oxide). J Colloid Interface Sci 183:285–288CrossRefGoogle Scholar
  39. 39.
    Nelson JH (2003) Nuclear magnetic resonance spectroscopy. Pearson Education TorontoGoogle Scholar
  40. 40.
    Wennerstrom H, Lindman B, Soderman O, Drakenberg T, Rosenholm J (1979) 13C magnetic relaxation in micellar solutions. Influence of aggregate motion on T1. J Am Chem Soc 101:6860–6864CrossRefGoogle Scholar
  41. 41.
    Persson B, Drakenberg T, Lindman B (1976) Amphiphile aggregation number and conformation from carbon-13 nuclear magnetic resonance chemical shifts. J Phys Chem 80:2124–2125CrossRefGoogle Scholar
  42. 42.
    Bhat M, Dar A, Amin A, Rashid P, Rather G (2007) Temperature dependence of transport and equilibrium properties of alkylpyridinium surfactants in aqueous solutions. J Chem Thermodyn 39:1500–1507CrossRefGoogle Scholar
  43. 43.
    Archer DG (1987) Enthalpies of dilution of aqueous tetradecyltrimethylammonium bromide from 50 to 175C. J Solution Chem 16:347–365CrossRefGoogle Scholar
  44. 44.
    Evans DF, Allen M, Ninham BW, Fouda A (1984) Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160 C. J Solution Chem 13:87–101CrossRefGoogle Scholar
  45. 45.
    Mao SZ, Du YR (2003) H-1 NMR studies of surfactants in aqueous solutions. Acta Physico-Chimica Sinica 19:675–680Google Scholar
  46. 46.
    Hawrylak BE, Marangoni DG (1999) A 2-D NMR investigation of the micellar solubilization site in ionic micellar solutions. Can J Chem 77:1241–1244CrossRefGoogle Scholar
  47. 47.
    Marangoni DG, Landry JM, Lumsden MD, Berno R (2007) A 1D and 2D NMR investigation of the micelle formation process in 8-phenyloctanoate micelles. Can J Chem 85:202–207CrossRefGoogle Scholar
  48. 48.
    Gruen DWR (1985) A model for the chains in amphiphilic aggregates. 1. Comparison with a molecular dynamics simulation of a bilayer. J Phys Chem 89:146–153CrossRefGoogle Scholar
  49. 49.
    Gruen DWR (1985) A model for the chains in amphiphilic aggregates. 2. Thermodynamic and experimental comparisons for aggregates of different shape and size. J Phys Chem 89:153–163CrossRefGoogle Scholar

Copyright information

© AOCS 2009

Authors and Affiliations

  • Josette M. Landry
    • 1
  • D. Gerrard Marangoni
    • 1
  • Deborah A. Arden
    • 2
  • Ian J. MacLennan
    • 2
  • Jan C. T. Kwak
    • 2
  1. 1.Department of ChemistrySt Francis Xavier UniversityAntigonishCanada
  2. 2.Department of ChemistryDalhousie UniversityHalifaxCanada

Personalised recommendations