Journal of Surfactants and Detergents

, Volume 7, Issue 4, pp 387–395 | Cite as

The self-aggregation of sodium perfluorooctanoate in aqueous solution at different temperatures

  • Alfredo González-Pérez
  • Juan M. Ruso
  • Gerardo Prieto
  • Félix SarmientoEmail author


Electrical conductivities of sodium perfluorooctanoate (SPFO) in aqueous solutions were measured at different temperatures (range 294–328 K). Critical micelle concentrations (CMC) and the degree of ionization (α) of the micelles were derived from such data. The results revealed that temperature dependence of CMC is U-shaped with a minimum at 316 K. Gibbs free energies, enthalpies, and entropies of micelle formation as a function of temperature were estimated from the CMC and α values using the charged pseudo-phase separation model. To correlate the enthalpic and entropic contributions, the compensation phenomenon was studied, with a compensation temperature of 309 K and an intercept of −27.7 kJ·mol−1. Apparent molar volumes and adiabatic compressibilities of SPFO were determined from density and ultrasound velocity measurements in the same temperature range as conductivities. Positive deviation from the Debye-Hückel limiting law of the apparent molar volume in the range of temperatures studied evidenced hydrogen bonding-type interactions between monomers and the existence of dimers in the premicellar region. With micellization, the apparent molar volumes decrease with rising temperature, indicating that the structure of micelles is looser than that of monomers. The isentropic apparent molar adiabatic compressibilities following micellization were positive, indicating the predominant role of the decrease in hydrophobic hydration in the association process.

Key words

Apparent molar compressibilities apparent molar volumes conductivities critical micelle concentration perfluorooctanoate self-aggregation thermodynamics of self-aggregation 



degree of ionization


critical micelle concentration


sodium perfluorooctanoate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krafft, M.P., Fluorocarbons and Fluorinated Amphiphiles in Drug Delivery and Biomedical Research, Adv. Drug Deliv. Rev. 47:209 (2001).CrossRefGoogle Scholar
  2. 2.
    Bondi, A., Van der Waals Volumes and Radii, J. Phys. Chem. 68:441 (1964).CrossRefGoogle Scholar
  3. 3.
    Eicke, H.F., Modern Trends of Colloid Science in Chemistry and Biology, Birkhauser Verlag, Basel, 1985, p. 148.CrossRefGoogle Scholar
  4. 4.
    Rosen, M.J., Surfactants and Interfacial Phenomena, Wiley, New York, 1978.Google Scholar
  5. 5.
    Kissa, E., Fluorinated Surfactants, Synthesis, Properties, Applications, Marcel Dekker, New York, 1994, Surfactant Science Series, Vol. 50.Google Scholar
  6. 6.
    Simmons J.H., Fluorine Chemistry, Academic Press, New York, 1964, p. 133.Google Scholar
  7. 7.
    Riess, J.G., Highly Fluorinated Systems for Oxygen Transport, Diagnosis and Drug Delivery, Colloids Surf. A 84:33 (1994).CrossRefGoogle Scholar
  8. 8.
    Krafft, M.P., and J.G. Riess, Highly Fluorinated and Colloidal Systems and Their Applications in the Biomedical Field. A Contribution, Biochimie 80:489 (1998).CrossRefGoogle Scholar
  9. 9.
    Riess, J.G., Fascinated by Fluorine, Elsevier, Amsterdam, 2000.Google Scholar
  10. 10.
    Riess, J.G., and M.P. Krafft, Fluorocarbons and Fluorosurfactants for in vivo Oxygen Transport (blood substitutes), Imaging, and Drug Delivery, Mat. Res. Soc. Bull. 24:42 (1999).CrossRefGoogle Scholar
  11. 11.
    Mukerjee, P., and T. Handa, Adsorption of Fluorocarbon and Hydrocarbon Surfactants to Air—Water, Hexane-Water and Perfluorohexane-Water Interfaces. Relative Affinities of Fluorocarbon-Hydrocarbon Nonideality Effects, J. Phys. Chem. 85:2298 (1981).CrossRefGoogle Scholar
  12. 12.
    Mukerjee, P. Fluorocarbon-Hydrocarbon Interactions in Micelles and Other Assemblies, at Interfaces, and in Solutions, Colloids Surf. A 84:1 (1994).CrossRefGoogle Scholar
  13. 13.
    Schneider, J., C. Erdelen, H. Ringsdorf, and J.F. Rabolt, Structural Studies of Polymers with Hydrophilic Spacer Groups. 2. Infrared Spectroscopy of Langmuir-Blodgett Multilayers of Polymers with Fluorocarbon Side Chains at Ambient and Elevated Temperatures, Macromolecules 22:3475 (1989).CrossRefGoogle Scholar
  14. 14.
    Fung, B.M., D.L. Mamrosh, E.A. O'Rear, C.B. Fresh, and J. Afzal, Unusual Micellar Properties of a New Class of Fluorinated Nonionic Surfactants, J. Phys. Chem. 92:4404 (1988).CrossRefGoogle Scholar
  15. 15.
    Guo, W., T.A. Brown, and B.M. Fung, Micelles and Aggregates of Fluorinated Surfactants, J. Phys. Chem. 95:1829 (1991).CrossRefGoogle Scholar
  16. 16.
    Shinoda, K., M. Hato, and T. Hayashi, The Physicochemical Properties of Aqueous Solutions of Fluorinated Surfactants, J. Phys. Chem. 76:909 (1972).CrossRefGoogle Scholar
  17. 17.
    Mukerjee, P., K. Korematsu, M. Okawauchi, and G. Sugihara, Effect of Temperature on Electrical Conductivity and the Thermodynamics of Micelle Formation, J. Phys. Chem 89:5308 (1985).CrossRefGoogle Scholar
  18. 18.
    Tamaki, K., Y. Ohara, and S. Watanabe, Solution Properties of Sodium Perfluoroalkanoates. Heats of Solution, Viscosity B Coefficients and Surface Tensions, Bull. Chem. Soc. Jpn. 62:2497 (1989).CrossRefGoogle Scholar
  19. 19.
    Kato, S., S. Harada, H. Nakashima, and H. Nomura, Ultrasonic Relaxation and Volumetric Studies of Micelle-Monomer Exchange Process in Aqueous Solutions of Sodium and Cesium Perfluorooctanoates, J. Colloid Interface Sci. 150:305 (1992).CrossRefGoogle Scholar
  20. 20.
    De Lisi, R., A. Inglese, S. Milioto, and A. Pellerito, Demixing of Mixed Micelles. Thermodynamics of Sodium Perfluorooctanoate-Sodium Dodecanoate in Water, Langmuir 13:192 (1997).CrossRefGoogle Scholar
  21. 21.
    De Lisi, R., S. Milioto, A. De Giacomo, and A. Inglese, Thermodynamic Properties of Sodium n-Perfluoroalkanoates in Water and in Water+Cyclodextrins Mixtures, Langmuir 15:5014 (1999).CrossRefGoogle Scholar
  22. 22.
    Fukada, K., Y. Kobayashi, Y. Ota, M. Fujii, T. Kato, and T. Seimiya, Effect of Pressure and Temperature on Adiabatic Compressibility of Aqueous Solutions of Amphiphiles with a Perfluorocarbon Chain, Thermochim. Acta 352–353:189 (2000).CrossRefGoogle Scholar
  23. 23.
    Oelschlaeger, C., G. Waton, E. Buhler, S. J. Candau, and M. E. Cates, Rheological and Light Scattering Studies of Cationic Fluorocarbon Surfactant Solutions at Low Ionic Strength, Langmuir 18:3076 (2002).CrossRefGoogle Scholar
  24. 24.
    Kiselev, V.D., E.A. Kashaeva, M.S. Shihaab, and A.I. Konovalov, Apparent Molar Volumes and Enthalpies of Solution of Tetracyanoethylene in Some Solvent and of Butan-1-ol in n-Octane at Different Concentrations, Mendeleev Commun. 10:43 (2000).CrossRefGoogle Scholar
  25. 25.
    Amararene, A., M. Gindre, J.-H. Le Huerou, W. Urbach, D. Valdez, and M. Walks, Adiabatic Compressibility of AOT [sodium bis (2-ethylhexyl) sulfosuccinate] Reverse Micelles: Analysis of A Simple Model Based on Micellar Size and Volumetric Measurements, Phys. Rev. E 61:682 (2000).CrossRefGoogle Scholar
  26. 26.
    Muzzalupo, R., G. Ranieri, and C. LaMesa, Solution Properties of Alkali Metal Perfluoroalkanoates, Colloids Surf. A 104:327 (1995).CrossRefGoogle Scholar
  27. 27.
    Tamaki, K., S. Watanabe, and Y. Daikyoji, Partial Molar Volumes of Sodium Perfluoroalkanoates and Lithium Perfluoro-1-alkanesulfonates in Aqueous Solutions, Bull. Chem. Soc. Jpn. 63:3861 (1990).CrossRefGoogle Scholar
  28. 28.
    Perron, G., and J.E. Desnoyers, Volumes and Heat Capacities of Sodium Perfluoroalkanoates in Water, J. Chem. Eng. Data 42:172 (1997).CrossRefGoogle Scholar
  29. 29.
    Kharakoz, D.P., Volumetric Properties of Proteins and Their Analogues in Diluted Water Solutions. 1. Partial Volumes of Amino Acids at 15–55 Degrees C, Biophys. Chem. 34:115 (1989).CrossRefGoogle Scholar
  30. 30.
    Kharakoz, D.P., Volumetric Properties of Proteins and Their Analogues in Diluted Water Solutions. 2. Partial Adiabatic Compressibilities of Amino Acids at 15–70°C, J. Phys. Chem. 95:5634 (1991).CrossRefGoogle Scholar
  31. 31.
    Shedlovsky, T., An Equation for Electrolytic Conductance, J. Am. Chem. Soc. 54:1405 (1932).CrossRefGoogle Scholar
  32. 32.
    Chambers, J.F., J.M. Stokes, and R.H. Stokes, Conductances of Sodium and Potassium Chloride Concentrated Aqueous Solutions at 25°, J. Phys. Chem. 60:985 (1956).CrossRefGoogle Scholar
  33. 33.
    Smit, B., K. Essenlink, P.A.J. Hilbers, N.M. van Os, L.A.M. Rupert, and I. Szleifer, Computer Simulations of Surfactants Self-Assembly, Langmuir 9:9 (1993).CrossRefGoogle Scholar
  34. 34.
    Sarmiento, F., J.M. del Rio, G. Prieto, D. Attwood, M.N. Jones, and V. Mosquera, Thermodynamics of Micelle Formation of Chlorhexidine Digluconate, J. Phys. Chem. 99:17628 (1995).CrossRefGoogle Scholar
  35. 35.
    Hoffmann, H., and W. Ulbright, Kinetic and Thermodynamic Measurements of Aggregation of Perfluorinated Surfactants, Z. Phys. Chem. 106:167 (1977).CrossRefGoogle Scholar
  36. 36.
    Zana, R., Ionization of Cationic Micelles: Effect of the Detergent Structure, J. Colloid Interface Sci. 78:330 (1980).CrossRefGoogle Scholar
  37. 37.
    Shinoda, K., and E. Hutchinson, Pseudo-Phase Separation Model for Thermodynamic Calculations on Micellar Solutions, J. Phys. Chem. 66:577 (1962).CrossRefGoogle Scholar
  38. 38.
    Lumry, R., and S. Rajender, Enthalpy-Entropy Compensation Phenomena in Water Solutions of Proteins and Small Molecules: An Ubiquitous Property of Water, Biopolymers 9:1125 (1970).CrossRefGoogle Scholar
  39. 39.
    Chen, L.-J., S.-H. Lin, and C.-C. Huang, Effect of Hydrophobic Chain Length of Surfactants on Enthalpy-Entropy Compensation of Micellization, J. Phys. Chem. B 102:4350 (1998).CrossRefGoogle Scholar
  40. 40.
    Sugihara, G., and M. Hisatomi, Enthalpy-Entropy Compensation Phenomenon Observed for Different Surfactants, J. Colloid Interface Sci. 219:31 (1999).CrossRefGoogle Scholar
  41. 41.
    Desnoyers, J.E., R. de Lis, C. Ostiguy, and G. Perron, Solution Chemistry of Surfactants, Plenum Press, New York, 1979.Google Scholar
  42. 42.
    Redlich, O., and D.M. Meyer, The Molal Volumes of Electrolytes, Chem. Rev. 64:221 (1964).CrossRefGoogle Scholar
  43. 43.
    Leduc, P.A., J.L. Fortier, and J.E. Desnoyers, Apparent Molal Volumes, Heat Capacities, and Excess Enthalpies of N-Alkylamine Hydrobromides in Water as a Function of Temperature J. Phys. Chem. 78:1217 (1974).CrossRefGoogle Scholar
  44. 44.
    Brun, T.S., H. Høiland, and E. Vikingstad, Partial Molal Volumes and Isentropic Partial Molal Compressibilities of Surface-Active Agents in Aqueous Solution, J. Colloid Interface Sci. 63:89 (1978).CrossRefGoogle Scholar
  45. 45.
    Musbally, G.M., G. Perron, and J.E. Desnoyers, Apparent Molal Volumes and Heat Capacities of Ionic Surfactants in Water at 25°C, J. Colloid Interface Sci. 48:494 (1974).CrossRefGoogle Scholar
  46. 46.
    Zielinski, R., S. Ikeda, H. Nomura, and S. Kato, Temperature Dependence of Adiabatic Compressibility of Aqueous Solutions of Alkyltrimethylammonium Bromides, J. Chem. Soc., Faraday Trans. I 84:151 (1988).CrossRefGoogle Scholar
  47. 47.
    Harned, H.S., and B.B. Owen, Physical Chemistry of Electrolyte Solutions, Chapman and Hall, London 1957.Google Scholar
  48. 48.
    Franks, F., M.J. Quikenden, J.R. Ravenhill, and H.T. Smith, Volumetric Behavior of Dilute Aqueous Solutions of Sodium Alkyl Sulfates, J. Phys. Chem. 72:2668 (1968).CrossRefGoogle Scholar
  49. 49.
    Høiland, H., and E. Vikingstad, Partial Molal Volumes and Volumes of Ionization of Hydroxycarboxylic Acid in Aqueous Solution at 25, 30, and 35°C, J. Chem. Soc. Faraday Trans I 71: 2007 (1975).CrossRefGoogle Scholar
  50. 50.
    Conway, B.E., and R.E. Verall, Ion-Solvent Size Ratio as a Factor in the Thermodynamics of Electrolytes, J. Phys. Chem. 70:3952 (1966).CrossRefGoogle Scholar
  51. 51.
    Mosquera, V., J.M. del Rio, D. Attwood, M. García, M.N. Jones, G. Prieto, and F. Sarmiento, A Study of the Aggregation Behavior of Hexyltrimethylammonium Bromide in Aqueous Solution, J. Colloid Interface Sci. 206:66 (1998).CrossRefGoogle Scholar
  52. 52.
    Suarez, M.J., J.L. López-Fontán, F. Sarmiento, and V. Mosquera, Thermodynamic Study of the Aggregation Behavior of Sodium n-Hexyl Sulfate in Aqueous Solution, Langmuir 15:5265 (1999).CrossRefGoogle Scholar
  53. 53.
    Zana, R. (ed.), Surfactant Solutions: New Methods of Investigation, Marcel Dekker, New York, Surfactant Science Series, Vol. 22, 1987.Google Scholar
  54. 54.
    Bradley, D.J., and K.S. Pitzer, Thermodynamics of Electrolytes. 12. Dielectric Properties of Water and Debye-Hückel Parameters to 350°C and 1 kbar, J. Phys. Chem. 83:1599 (1979).CrossRefGoogle Scholar
  55. 55.
    Garney, R., R.J. Boe, R. Mahoney, and T.A. Litovitz, Determination of Electrolyte Apparent Molal Compressibilities at Infinite Dilution Using a High-Precision Ultrasonic Velocimeter, J. Chem. Phys. 50:5222 (1969).CrossRefGoogle Scholar
  56. 56.
    Cabani, S., G. Conti, and E. Matteoli, Adiabatic and Isothermal Molal Compressibilities of Organic Compounds in Water. I. Cyclic and Open-Chain Secondary Alcohols and Ethers, J. Solution Chem. 8:11 (1979).CrossRefGoogle Scholar

Copyright information

© AOCS 2004

Authors and Affiliations

  • Alfredo González-Pérez
    • 1
  • Juan M. Ruso
    • 1
  • Gerardo Prieto
    • 1
  • Félix Sarmiento
    • 1
    Email author
  1. 1.Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations