Skip to main content
Log in

The self-aggregation of sodium perfluorooctanoate in aqueous solution at different temperatures

  • Published:
Journal of Surfactants and Detergents

Abstract

Electrical conductivities of sodium perfluorooctanoate (SPFO) in aqueous solutions were measured at different temperatures (range 294–328 K). Critical micelle concentrations (CMC) and the degree of ionization (α) of the micelles were derived from such data. The results revealed that temperature dependence of CMC is U-shaped with a minimum at 316 K. Gibbs free energies, enthalpies, and entropies of micelle formation as a function of temperature were estimated from the CMC and α values using the charged pseudo-phase separation model. To correlate the enthalpic and entropic contributions, the compensation phenomenon was studied, with a compensation temperature of 309 K and an intercept of −27.7 kJ·mol−1. Apparent molar volumes and adiabatic compressibilities of SPFO were determined from density and ultrasound velocity measurements in the same temperature range as conductivities. Positive deviation from the Debye-Hückel limiting law of the apparent molar volume in the range of temperatures studied evidenced hydrogen bonding-type interactions between monomers and the existence of dimers in the premicellar region. With micellization, the apparent molar volumes decrease with rising temperature, indicating that the structure of micelles is looser than that of monomers. The isentropic apparent molar adiabatic compressibilities following micellization were positive, indicating the predominant role of the decrease in hydrophobic hydration in the association process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

degree of ionization

CMC:

critical micelle concentration

SPFO:

sodium perfluorooctanoate

References

  1. Krafft, M.P., Fluorocarbons and Fluorinated Amphiphiles in Drug Delivery and Biomedical Research, Adv. Drug Deliv. Rev. 47:209 (2001).

    Article  CAS  Google Scholar 

  2. Bondi, A., Van der Waals Volumes and Radii, J. Phys. Chem. 68:441 (1964).

    Article  CAS  Google Scholar 

  3. Eicke, H.F., Modern Trends of Colloid Science in Chemistry and Biology, Birkhauser Verlag, Basel, 1985, p. 148.

    Book  Google Scholar 

  4. Rosen, M.J., Surfactants and Interfacial Phenomena, Wiley, New York, 1978.

    Google Scholar 

  5. Kissa, E., Fluorinated Surfactants, Synthesis, Properties, Applications, Marcel Dekker, New York, 1994, Surfactant Science Series, Vol. 50.

    Google Scholar 

  6. Simmons J.H., Fluorine Chemistry, Academic Press, New York, 1964, p. 133.

    Google Scholar 

  7. Riess, J.G., Highly Fluorinated Systems for Oxygen Transport, Diagnosis and Drug Delivery, Colloids Surf. A 84:33 (1994).

    Article  CAS  Google Scholar 

  8. Krafft, M.P., and J.G. Riess, Highly Fluorinated and Colloidal Systems and Their Applications in the Biomedical Field. A Contribution, Biochimie 80:489 (1998).

    Article  CAS  Google Scholar 

  9. Riess, J.G., Fascinated by Fluorine, Elsevier, Amsterdam, 2000.

    Google Scholar 

  10. Riess, J.G., and M.P. Krafft, Fluorocarbons and Fluorosurfactants for in vivo Oxygen Transport (blood substitutes), Imaging, and Drug Delivery, Mat. Res. Soc. Bull. 24:42 (1999).

    Article  CAS  Google Scholar 

  11. Mukerjee, P., and T. Handa, Adsorption of Fluorocarbon and Hydrocarbon Surfactants to Air—Water, Hexane-Water and Perfluorohexane-Water Interfaces. Relative Affinities of Fluorocarbon-Hydrocarbon Nonideality Effects, J. Phys. Chem. 85:2298 (1981).

    Article  CAS  Google Scholar 

  12. Mukerjee, P. Fluorocarbon-Hydrocarbon Interactions in Micelles and Other Assemblies, at Interfaces, and in Solutions, Colloids Surf. A 84:1 (1994).

    Article  CAS  Google Scholar 

  13. Schneider, J., C. Erdelen, H. Ringsdorf, and J.F. Rabolt, Structural Studies of Polymers with Hydrophilic Spacer Groups. 2. Infrared Spectroscopy of Langmuir-Blodgett Multilayers of Polymers with Fluorocarbon Side Chains at Ambient and Elevated Temperatures, Macromolecules 22:3475 (1989).

    Article  CAS  Google Scholar 

  14. Fung, B.M., D.L. Mamrosh, E.A. O'Rear, C.B. Fresh, and J. Afzal, Unusual Micellar Properties of a New Class of Fluorinated Nonionic Surfactants, J. Phys. Chem. 92:4404 (1988).

    Article  Google Scholar 

  15. Guo, W., T.A. Brown, and B.M. Fung, Micelles and Aggregates of Fluorinated Surfactants, J. Phys. Chem. 95:1829 (1991).

    Article  CAS  Google Scholar 

  16. Shinoda, K., M. Hato, and T. Hayashi, The Physicochemical Properties of Aqueous Solutions of Fluorinated Surfactants, J. Phys. Chem. 76:909 (1972).

    Article  CAS  Google Scholar 

  17. Mukerjee, P., K. Korematsu, M. Okawauchi, and G. Sugihara, Effect of Temperature on Electrical Conductivity and the Thermodynamics of Micelle Formation, J. Phys. Chem 89:5308 (1985).

    Article  CAS  Google Scholar 

  18. Tamaki, K., Y. Ohara, and S. Watanabe, Solution Properties of Sodium Perfluoroalkanoates. Heats of Solution, Viscosity B Coefficients and Surface Tensions, Bull. Chem. Soc. Jpn. 62:2497 (1989).

    Article  CAS  Google Scholar 

  19. Kato, S., S. Harada, H. Nakashima, and H. Nomura, Ultrasonic Relaxation and Volumetric Studies of Micelle-Monomer Exchange Process in Aqueous Solutions of Sodium and Cesium Perfluorooctanoates, J. Colloid Interface Sci. 150:305 (1992).

    Article  CAS  Google Scholar 

  20. De Lisi, R., A. Inglese, S. Milioto, and A. Pellerito, Demixing of Mixed Micelles. Thermodynamics of Sodium Perfluorooctanoate-Sodium Dodecanoate in Water, Langmuir 13:192 (1997).

    Article  Google Scholar 

  21. De Lisi, R., S. Milioto, A. De Giacomo, and A. Inglese, Thermodynamic Properties of Sodium n-Perfluoroalkanoates in Water and in Water+Cyclodextrins Mixtures, Langmuir 15:5014 (1999).

    Article  Google Scholar 

  22. Fukada, K., Y. Kobayashi, Y. Ota, M. Fujii, T. Kato, and T. Seimiya, Effect of Pressure and Temperature on Adiabatic Compressibility of Aqueous Solutions of Amphiphiles with a Perfluorocarbon Chain, Thermochim. Acta 352–353:189 (2000).

    Article  Google Scholar 

  23. Oelschlaeger, C., G. Waton, E. Buhler, S. J. Candau, and M. E. Cates, Rheological and Light Scattering Studies of Cationic Fluorocarbon Surfactant Solutions at Low Ionic Strength, Langmuir 18:3076 (2002).

    Article  CAS  Google Scholar 

  24. Kiselev, V.D., E.A. Kashaeva, M.S. Shihaab, and A.I. Konovalov, Apparent Molar Volumes and Enthalpies of Solution of Tetracyanoethylene in Some Solvent and of Butan-1-ol in n-Octane at Different Concentrations, Mendeleev Commun. 10:43 (2000).

    Article  Google Scholar 

  25. Amararene, A., M. Gindre, J.-H. Le Huerou, W. Urbach, D. Valdez, and M. Walks, Adiabatic Compressibility of AOT [sodium bis (2-ethylhexyl) sulfosuccinate] Reverse Micelles: Analysis of A Simple Model Based on Micellar Size and Volumetric Measurements, Phys. Rev. E 61:682 (2000).

    Article  CAS  Google Scholar 

  26. Muzzalupo, R., G. Ranieri, and C. LaMesa, Solution Properties of Alkali Metal Perfluoroalkanoates, Colloids Surf. A 104:327 (1995).

    Article  CAS  Google Scholar 

  27. Tamaki, K., S. Watanabe, and Y. Daikyoji, Partial Molar Volumes of Sodium Perfluoroalkanoates and Lithium Perfluoro-1-alkanesulfonates in Aqueous Solutions, Bull. Chem. Soc. Jpn. 63:3861 (1990).

    Article  Google Scholar 

  28. Perron, G., and J.E. Desnoyers, Volumes and Heat Capacities of Sodium Perfluoroalkanoates in Water, J. Chem. Eng. Data 42:172 (1997).

    Article  CAS  Google Scholar 

  29. Kharakoz, D.P., Volumetric Properties of Proteins and Their Analogues in Diluted Water Solutions. 1. Partial Volumes of Amino Acids at 15–55 Degrees C, Biophys. Chem. 34:115 (1989).

    Article  CAS  Google Scholar 

  30. Kharakoz, D.P., Volumetric Properties of Proteins and Their Analogues in Diluted Water Solutions. 2. Partial Adiabatic Compressibilities of Amino Acids at 15–70°C, J. Phys. Chem. 95:5634 (1991).

    Article  CAS  Google Scholar 

  31. Shedlovsky, T., An Equation for Electrolytic Conductance, J. Am. Chem. Soc. 54:1405 (1932).

    Article  CAS  Google Scholar 

  32. Chambers, J.F., J.M. Stokes, and R.H. Stokes, Conductances of Sodium and Potassium Chloride Concentrated Aqueous Solutions at 25°, J. Phys. Chem. 60:985 (1956).

    Article  CAS  Google Scholar 

  33. Smit, B., K. Essenlink, P.A.J. Hilbers, N.M. van Os, L.A.M. Rupert, and I. Szleifer, Computer Simulations of Surfactants Self-Assembly, Langmuir 9:9 (1993).

    Article  CAS  Google Scholar 

  34. Sarmiento, F., J.M. del Rio, G. Prieto, D. Attwood, M.N. Jones, and V. Mosquera, Thermodynamics of Micelle Formation of Chlorhexidine Digluconate, J. Phys. Chem. 99:17628 (1995).

    Article  CAS  Google Scholar 

  35. Hoffmann, H., and W. Ulbright, Kinetic and Thermodynamic Measurements of Aggregation of Perfluorinated Surfactants, Z. Phys. Chem. 106:167 (1977).

    Article  CAS  Google Scholar 

  36. Zana, R., Ionization of Cationic Micelles: Effect of the Detergent Structure, J. Colloid Interface Sci. 78:330 (1980).

    Article  CAS  Google Scholar 

  37. Shinoda, K., and E. Hutchinson, Pseudo-Phase Separation Model for Thermodynamic Calculations on Micellar Solutions, J. Phys. Chem. 66:577 (1962).

    Article  CAS  Google Scholar 

  38. Lumry, R., and S. Rajender, Enthalpy-Entropy Compensation Phenomena in Water Solutions of Proteins and Small Molecules: An Ubiquitous Property of Water, Biopolymers 9:1125 (1970).

    Article  CAS  Google Scholar 

  39. Chen, L.-J., S.-H. Lin, and C.-C. Huang, Effect of Hydrophobic Chain Length of Surfactants on Enthalpy-Entropy Compensation of Micellization, J. Phys. Chem. B 102:4350 (1998).

    Article  CAS  Google Scholar 

  40. Sugihara, G., and M. Hisatomi, Enthalpy-Entropy Compensation Phenomenon Observed for Different Surfactants, J. Colloid Interface Sci. 219:31 (1999).

    Article  CAS  Google Scholar 

  41. Desnoyers, J.E., R. de Lis, C. Ostiguy, and G. Perron, Solution Chemistry of Surfactants, Plenum Press, New York, 1979.

    Google Scholar 

  42. Redlich, O., and D.M. Meyer, The Molal Volumes of Electrolytes, Chem. Rev. 64:221 (1964).

    Article  CAS  Google Scholar 

  43. Leduc, P.A., J.L. Fortier, and J.E. Desnoyers, Apparent Molal Volumes, Heat Capacities, and Excess Enthalpies of N-Alkylamine Hydrobromides in Water as a Function of Temperature J. Phys. Chem. 78:1217 (1974).

    Article  CAS  Google Scholar 

  44. Brun, T.S., H. Høiland, and E. Vikingstad, Partial Molal Volumes and Isentropic Partial Molal Compressibilities of Surface-Active Agents in Aqueous Solution, J. Colloid Interface Sci. 63:89 (1978).

    Article  CAS  Google Scholar 

  45. Musbally, G.M., G. Perron, and J.E. Desnoyers, Apparent Molal Volumes and Heat Capacities of Ionic Surfactants in Water at 25°C, J. Colloid Interface Sci. 48:494 (1974).

    Article  CAS  Google Scholar 

  46. Zielinski, R., S. Ikeda, H. Nomura, and S. Kato, Temperature Dependence of Adiabatic Compressibility of Aqueous Solutions of Alkyltrimethylammonium Bromides, J. Chem. Soc., Faraday Trans. I 84:151 (1988).

    Article  CAS  Google Scholar 

  47. Harned, H.S., and B.B. Owen, Physical Chemistry of Electrolyte Solutions, Chapman and Hall, London 1957.

    Google Scholar 

  48. Franks, F., M.J. Quikenden, J.R. Ravenhill, and H.T. Smith, Volumetric Behavior of Dilute Aqueous Solutions of Sodium Alkyl Sulfates, J. Phys. Chem. 72:2668 (1968).

    Article  CAS  Google Scholar 

  49. Høiland, H., and E. Vikingstad, Partial Molal Volumes and Volumes of Ionization of Hydroxycarboxylic Acid in Aqueous Solution at 25, 30, and 35°C, J. Chem. Soc. Faraday Trans I 71: 2007 (1975).

    Article  Google Scholar 

  50. Conway, B.E., and R.E. Verall, Ion-Solvent Size Ratio as a Factor in the Thermodynamics of Electrolytes, J. Phys. Chem. 70:3952 (1966).

    Article  CAS  Google Scholar 

  51. Mosquera, V., J.M. del Rio, D. Attwood, M. García, M.N. Jones, G. Prieto, and F. Sarmiento, A Study of the Aggregation Behavior of Hexyltrimethylammonium Bromide in Aqueous Solution, J. Colloid Interface Sci. 206:66 (1998).

    Article  CAS  Google Scholar 

  52. Suarez, M.J., J.L. López-Fontán, F. Sarmiento, and V. Mosquera, Thermodynamic Study of the Aggregation Behavior of Sodium n-Hexyl Sulfate in Aqueous Solution, Langmuir 15:5265 (1999).

    Article  CAS  Google Scholar 

  53. Zana, R. (ed.), Surfactant Solutions: New Methods of Investigation, Marcel Dekker, New York, Surfactant Science Series, Vol. 22, 1987.

    Google Scholar 

  54. Bradley, D.J., and K.S. Pitzer, Thermodynamics of Electrolytes. 12. Dielectric Properties of Water and Debye-Hückel Parameters to 350°C and 1 kbar, J. Phys. Chem. 83:1599 (1979).

    Article  CAS  Google Scholar 

  55. Garney, R., R.J. Boe, R. Mahoney, and T.A. Litovitz, Determination of Electrolyte Apparent Molal Compressibilities at Infinite Dilution Using a High-Precision Ultrasonic Velocimeter, J. Chem. Phys. 50:5222 (1969).

    Article  Google Scholar 

  56. Cabani, S., G. Conti, and E. Matteoli, Adiabatic and Isothermal Molal Compressibilities of Organic Compounds in Water. I. Cyclic and Open-Chain Secondary Alcohols and Ethers, J. Solution Chem. 8:11 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Sarmiento.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Pérez, A., Ruso, J.M., Prieto, G. et al. The self-aggregation of sodium perfluorooctanoate in aqueous solution at different temperatures. J Surfact Deterg 7, 387–395 (2004). https://doi.org/10.1007/s11743-004-0323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-004-0323-9

Key words

Navigation