Journal of Surfactants and Detergents

, Volume 3, Issue 3, pp 335–343 | Cite as

Mechanism of the odor-adsorption effect of zinc ricinoleate. A molecular dynamics computer simulation

  • H. KuhnEmail author
  • F. Müller
  • J. Peggau
  • R. Zekorn


Zinc ricinoleate [Zn(Ri)2] is widely used in surfactant and detergent mixtures for the adsorption of odor-active compounds. The mechanism of this process is not known. In this initial study, we discuss the results of molecular dynamics computer simulations that were performed to get more information and detailed insights into the interaction mechanism between Zn(Ri)2 and odor-active substances. The calculations, based on simple molecular mechanics approximations, simulated the dynamic features of the molecular structures of Zn(Ri)2 in vacuum, in the oil phase, and in aqueous solution. We determined actual molecular conformations and simulated an adduct of ammonia with Zn(Ri)2. On close inspection, in the vacuum and oil phase structures, the Zn2+ ion is almost completely shielded by the oxygen ligands. Calculated structural transitions caused by the interaction of Zn(Ri)2 with water-solvent molecules resulted in a weakening of the electrostatic shield. Nucleophilic attack of odor-active compounds to the relatively unprotected Zn2+ atom is easy to achieve in aqueous solution. Simulation of the addition product of Zn(Ri)2 with ammonia revealed an elementary structural change, resulting in an increase of the solubility and adsorption activity of Zn(Ri)2. Molecular dynamics simulations showed that the results coincide with experimental observations.

Key Words

Molecular dynamics simulation molecular structure odor-adsorption zinc ricinoleate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henning, H.-W., and P. Sartori, Bildung von Geruchsemissionen bei Abwasser-, Abluft- und Kompostierungsanlagen, Teil I—Einführung in die Problematik, Chem. Ztg. 110:63 (1986).Google Scholar
  2. 2.
    Mizui, K., Spray Disinfectant Composition for Odorous Air Treatment, Jpn. Kokai Tokkyo Koho J.P. 11,076,388 (1999).Google Scholar
  3. 3.
    Widmann, L., and B. Koegler, Cleansing and Personal Hygiene Towel for Anal, Genital, and Stomatal Areas, Inventor Name, PCT Int. Appl. W.O. 9,838,868 (1998).Google Scholar
  4. 4.
    Zekorn, R., Zinc Ricinoleate: The Basis of Its Deodorizing Activity, Cosmet. Toiletries 112:37 (1997).Google Scholar
  5. 5.
    Schroeder, J., Deodorant Powder with Roll-On Applicator, Ger. Offen. D.E. 19,605,658 (1997).Google Scholar
  6. 6.
    Zekorn, Deodorants Based on Zinc Ricinoleate, Parfüm. Kosmet. 77:682 (1996).Google Scholar
  7. 7.
    Wisotzki, K., R. Zekorn, and N. Desai, Deodorant Comprising Zinc Salts of Hydroxylated Fatty Acids, Ger. Offen. D.E. 4,014,055 (1991).Google Scholar
  8. 8.
    Desai, N., and N. Lowicki, Cosmetic Deodorants Containing Fatty Acid Zinc Salts, Ger. Offen. D.E. 3,808,114 (1989).Google Scholar
  9. 9.
    Jacobs, J., R. Weber, and W. Pochandke, Laundry Detergent Additives for Inhibiting Dye and Brightener Transfer During Laundering, Ger. Offen. D.E. 3,803,630 (1989).Google Scholar
  10. 10.
    Schrader, K., Expanded Knowledge on the Use of Modified Zinc Ricinoleate in Cosmetics, Riechst. Aromen Kosmet. 29:134 (1979).Google Scholar
  11. 11.
    Sartori, P., N. Lowicki, and M. Sidillo, Action of Metal Ricinoleates as Deodorizing Agents, Cosmet. Toiletries 92:45 (1977).Google Scholar
  12. 12.
    Lowicki, N., M. Sidillo, and O. Neunhoeffer, Ein neues Prinzip der Desodorierung, Fette Seifen Anstrichm. 75:647 (1973).CrossRefGoogle Scholar
  13. 13.
    Paukner, E., and V. Hudewenz, Die sogenannten Geruchsvernichter II, J. Soc. Cosmet. Chem. 26:235 (1975).Google Scholar
  14. 14.
    Lowicki, N., M. Sidillo, and O. Neuenhoeffer, Desodorierung mit Grillocin®-Toxikologische und hautspezifische Eigenschaften, Kosmetika 2:14 (1974).Google Scholar
  15. 15.
    Lowicki, N., Toxikologische und hautspezifische Eigenschaften des Grillocin®, Fette Seifen Anstrichm. 76:136 (1974).CrossRefGoogle Scholar
  16. 16.
    Meyer-Rohn, J., Experimentelle und klinische Untersuchungen zur desodorierenden Wirkung von Grillocin®, Parfüm. Kosm. 57:239 (1976).Google Scholar
  17. 17.
    Gans, E.H., and J. Shacknai, Compositions for the Treatment of Dermatological Disorders and Methods for Their Use, PCT Int. Appl. W.O. 9,715,282 (1997).Google Scholar
  18. 18.
    Hennig, H.W., P. Sartori, and P. Neu, Fixation of Odorous Emissions at Wastewater, Waste Gas, and Composting Plants. Part IV. Studies on the Mechanism of Osmogen Fixation by the Selective Reagent Grillocin, Chem. Ztg. 113:73 (1989).Google Scholar
  19. 19.
    Rudolph-Linke, S., Zinksalze von Fett- und Carbonsäuren als geruchslöschende Verbindungen, Ph.D. Thesis, University of Duisburg, 1997.Google Scholar
  20. 20.
    Allen, M.P., and D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.Google Scholar
  21. 21.
    van Gunsteren, W.F., and H.J.C. Berendsen, Moleküldynamik-Computersimulationen; Methodik, Anwendungen und Perspektiven in der Chemie, Angew. Chem. 102:1020 (1990).Google Scholar
  22. 22.
    Damodaran, K.V., and K.M. Merz Jr., Computer Simulation of Lipid Systems, in Reviews in Computational Chemistry 5, edited by K.B. Lipkowitz and D.B. Boyd, VCH Publishers, Inc., New York, 1994, Vol. 5, p. 269.Google Scholar
  23. 23.
    Molecular Simulation Inc., Program DISCOVEr, Ver. 4.0.0, San Diego, 1996.Google Scholar
  24. 24.
    Nowak, W., A. Wojtczak, and V. Cody, Computer Modeling with the ESFF Forcefield of Human Dihydrofolate Reductase Ternary Complex with NADPH and Piritrexim (PTX) Inhibitor, Int. J. Chem. 2:1 (1999).Google Scholar
  25. 25.
    Jager, N., and U. Schilde, Molecular Mechanics Calculations on Chelates of Titanium(IV), Vanadium(IV/V), Copper(II), Nickel(II), Molybdenum(IV/V), Rhenium(IV/V) and Tin(IV) with Di- and Tridentate Ligands Using the New Extensible Systematic Forcefield (ESFF)—An Empirical Study, Struct. Chem. 9:77 (1998).CrossRefGoogle Scholar
  26. 26.
    Schneider, A.M., and P. Behrens, Molecular Mechanics Study on Organometallic Complexes in Crystalline Silica Matrixes Using the ESFF (extensible systematic forcefield), Chem. Mat. 10:679 (1998).CrossRefGoogle Scholar
  27. 27.
    Barlow, S., A.L. Rohl, S. Shi, C.M. Freeman, and D. O'Hare, Molecular Mechanics Study of Oligomeric Models for Poly(ferrocenysilanes) Using the Extensible Systematic Forcefield (ESFF), J. Am. Chem. Soc. 118:7578 (1996).CrossRefGoogle Scholar
  28. 28.
    Asensio, J.L., M. Martín-Pastor, and J. Jiménez-Barbero, The Use of the MM3 and ESFF Forcefields in Conformational Analysis of Carbohydrate Molecules in Solution: The Methyl α-Lactoside Case, J. Mol. Struct. 395–396:245 (1997).Google Scholar
  29. 29.
    Martins, J.C., R. Willem, and M. Biesemans, A Comparative Investigation of the Consistent Valence and Extensible Systematic Forcefields. A Case Study on the Conformation of Erythromycin A in Benzene, J. Chem. Soc., Perkin Trans.2:1513 (1999).Google Scholar
  30. 30.
    Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, Cambridge University Press, London, 1986.Google Scholar
  31. 31.
    Andersen, H.C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Chem. Phys. 72:2384 (1980).CrossRefGoogle Scholar
  32. 32.
    Verlet, L., Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lannard-Jones Molecules, Phys. Rev. 159:98 (1967).CrossRefGoogle Scholar

Copyright information

© AOCS Press 2000

Authors and Affiliations

  1. 1.Goldschmidt AGEssenGermany
  2. 2.Department of Physical ChemistryUniversity of EssenEssenGermany

Personalised recommendations