Advertisement

Journal of Shanghai University (English Edition)

, Volume 11, Issue 6, pp 619–624 | Cite as

Phenotypic characterization of a rice mutant Oryza sativa extraordinary glume 1 (Oseg 1) and its genetic analysis

  • Wang Hong-mei  (王红梅)
  • Chu Huang-wei  (储黄伟)
  • Liu Hai-sheng  (刘海生)
  • Li Xiao-xing  (李晓星)
  • Yang Gong-da  (杨功达)
  • Zhang Da-bing  (张大兵)
  • Yong Ke-lan  (雍克岚)
Article
  • 29 Downloads

Abstract

A rice mutant with Japonica 9522 cultivar background Oryza sativa extraordinary glume 1 (Oseg 1) was identified from the M 2 mutant pool mutagenized by 60Co γ-ray. Compared with wild type plants, Oseg 1 developed longer empty glumes and rudimentary glumes. In some Oseg 1 mutants, the number of stamens of flowers was reduced and leaf-like lodicules occurred, and excessive lemma/palea-like organ could be observed in some mutant spikelets. This indicated that OsEG1 could regulate the edevelopment of rudimentary glumes, empty glumes, lemma/palea, lodicules, and stamens. Genetic analysis indicated that Oseg 1 came from a single recessive genetic locus. To clone OsEG1 gene, F 2 population was constructed by a cross between Oseg 1 (Japonica) and Guangluai4 (Indica). Using map-based cloning approach, OsEG1 was mapped on chromosome 4, between INDEL marker OS407 and WHM0466 with genetic distance of 2.0 cm and 1.0 cm, respectively. These results are useful for further cloning and functional analysis of the OsEG1 gene.

Keywords

rice (Oryza sativa L.glume OsEGspikelet meristem primary mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development [J]. Nature, 1991, 353(6339): 31–37.CrossRefGoogle Scholar
  2. [2]
    Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity [J]. Cell, 1992, 71(1): 119–131.CrossRefGoogle Scholar
  3. [3]
    Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes [J]. Cell, 1994, 78(2): 203–209.CrossRefGoogle Scholar
  4. [4]
    Kyozuka J, Kobayashi T, Morita M, Shimamoto K. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes [J]. Plant and Cell Physiology, 2000, 41(6): 710–718.Google Scholar
  5. [5]
    Ferrario S, Immink R G, Angenent G C. Conservation and diversity in flower land [J]. Current Opinion in Plant Biology, 2004, 7(1): 84–91.CrossRefGoogle Scholar
  6. [6]
    Irish V F, Litt A. Flower development and evolution: gene duplication, diversification and redeployment [J]. Current Opinion in Genetics Development, 2005, 15(4): 454–460.CrossRefGoogle Scholar
  7. [7]
    Lohmann J U, Weigel D. Building beauty: the genetic control of floral pattering [J]. Developmental Cell, 2002, 2(2): 135–142.CrossRefGoogle Scholar
  8. [8]
    Colombo L, Frankeln J, Koetje E, van Went J, Dons H J, Angenent G C, van Junen A J. The petunia MADS box gene FBP11 determines ovule identity [J]. Plant Cell, 1995, 7(11): 1859–1868.CrossRefGoogle Scholar
  9. [9]
    Alvarez J, Smyth D R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS [J]. Development, 1999, 126(11): 2377–2386.Google Scholar
  10. [10]
    Yamaguchi T, Nagasawa N, Kawasaki S. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa [J]. Plant Cell, 2004, 16(2): 500–509.CrossRefGoogle Scholar
  11. [11]
    Pelaz S, Ditta G S, Baumann E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes [J]. Nature, 2000, 405(6783): 200–203.CrossRefGoogle Scholar
  12. [12]
    Theissen G, Saedler H. Plant biology. Floral quartets [J]. Nature, 2001, 409(6819): 469–471.CrossRefGoogle Scholar
  13. [13]
    Hoshikawa Y, Ichii S. Structures and functions of steroid hormone response elements [J]. Nippon Rinsho, 1989, 47(10): 2324–2329.Google Scholar
  14. [14]
    Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets [J]. Development, 2003, 130(16): 3841–3850.CrossRefGoogle Scholar
  15. [15]
    Kang H G, Jeon J S, Lee S, An G. Identification of class B and class C floral organ identity genes from rice plants [J]. Plant Molecular Biology, 1998, 38(6): 1021–1029.CrossRefGoogle Scholar
  16. [16]
    Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice [J]. Development, 2003, 130(4): 705–718.CrossRefGoogle Scholar
  17. [17]
    Schmidt R J, Ambrose B A. The blooming of grass flower development [J]. Current Opinion in Plant Biology, 1998, 1(1): 60–67.CrossRefGoogle Scholar
  18. [18]
    Prasad K, Sriram P, Kumar C S, Kushalappa K, Vijayraghavan U. Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals [J]. Development Genes and Evolution, 2001, 211(6): 281–290.CrossRefGoogle Scholar
  19. [19]
    Luo Q, Zhou K, Zhao X, Zeng Q, Xia H, Zhai H, Zhai W, Xu J, Wu X, Yang H, Zhu L. Identification and fine mapping of a mutant gene for palealess spikelet in rice [J]. Planta, 2005, 221(2): 222–230.CrossRefGoogle Scholar
  20. [20]
    Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs [J]. The Plant Journal, 2005, 43(6): 915–928.CrossRefGoogle Scholar
  21. [21]
    Agrawal G K, Abe K, Yamazaki M, Miyao A, Hirochika H. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene [J]. Plant Molecular Biology, 2005, 59(1): 125–135.CrossRefGoogle Scholar
  22. [22]
    Liu Hai-sheng, Chu Huang-wei, Li Hui, Wang Hong-mei, Wei Jia-li, Li Na, Ding Shu-yan, Huang Hai, Ma Hong, Huang Chao-feng, Luo Da, Yuang Zheng, Liu Jia-hua, Zhang Da-bing. Genetic analysis and mapping of rice (Oryza sativa L.) male-sterile (OsMS-L) mutant [J]. Chinese Science Bulletin, 2005, 50: 122–125 (in Chinese).CrossRefGoogle Scholar
  23. [23]
    Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research, 1980, 8(19): 4321–4325.CrossRefGoogle Scholar
  24. [24]
    Qian Qian, Li Yun-hai, Zeng Da-li, Teng Sheng, Wang Zheng-ke, Li Xue-yong, Dong Zhi-gang, Dai Ning, Sun Lei, Li Jia-yang. Isolation and genetic characterization of a fragile plant mutant in rice (Oryza sativa L.) [J]. Chinese Science Bulletin, 2001, 46: 2082–2085 (in Chinese).CrossRefGoogle Scholar
  25. [25]
    Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica) [J]. Science, 2002, 296(5565): 92–100.CrossRefGoogle Scholar
  26. [26]
    Yu J, Hu S, Wang J, Li W, Li L, Han Y J, Geng J N, Cong L J, Tong W, Ye C. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica) [J]. Science, 2002, 296(5565): 79–92.CrossRefGoogle Scholar
  27. [27]
    Akagi H, Yokozeki Y, Inagaki A, Fujimura T. Micron, a microsatellite-targeting transposable element in the rice genome [J]. Molecular Genetics and Genomics, 2001, 266(3): 471–480.CrossRefGoogle Scholar
  28. [28]
    Xu Shao-bin, Tao Yu-fen, Yang Zhao-qing, Chu Jia-you. A simple and rapid methods used for silver staining and gel preservation [J]. Yi Chuan, 2002, 24(3): 335–336 (in Chinese).Google Scholar
  29. [29]
    Liu Ren-hu, Meng Jin-ling. MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data [J]. Yi Chuan, 2003, 25(3): 317–321 (in Chinese).Google Scholar
  30. [30]
    Moore G, Devos K M, Wang Z, Gale M D. Cereal genome evolution. Grasses, line up and form a circle [J]. Current Biology, 1995, 5(7): 737–739.CrossRefGoogle Scholar
  31. [31]
    F F, G M, L M MADS-box genes controlling flower development in rice [J]. Plant Biology, 2003, 5: 16–22.CrossRefGoogle Scholar
  32. [32]
    Wolfe K H, Gouy M, Yang Y W, Sharp P M, Li W H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data [J]. Proceedings of the National Academy of Sciences USA, 1989, 86(16): 6201–6205.CrossRefGoogle Scholar
  33. [33]
    Prasad K, Vijayraghavan U. Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorl-specific function in floral organ patterning [J]. Genetics, 2003, 165(4): 2301–2305.Google Scholar
  34. [34]
    Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli G B, Pezzotti M, Ferrario S, Greats T, Angenent G C. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia [J]. Plant Cell, 2003, 15(11): 2680–2693.CrossRefGoogle Scholar
  35. [35]
    Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs [J]. Nature, 2001, 409(6819): 525–529.CrossRefGoogle Scholar

Copyright information

© Shanghai University 2007

Authors and Affiliations

  • Wang Hong-mei  (王红梅)
    • 1
    • 2
  • Chu Huang-wei  (储黄伟)
    • 2
  • Liu Hai-sheng  (刘海生)
    • 2
  • Li Xiao-xing  (李晓星)
    • 2
  • Yang Gong-da  (杨功达)
    • 2
  • Zhang Da-bing  (张大兵)
    • 2
  • Yong Ke-lan  (雍克岚)
    • 1
  1. 1.School of Life SciencesShanghai UniversityShanghaiP. R. China
  2. 2.SJTU-SIBS-PSU Joint Center for Life Sciences, School of Life Science and BiotechnologyShanghai Jiaotong UniversityShanghaiP. R. China

Personalised recommendations