Generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system

  • Yan Jian-ping 
  • Li Chang-pin 
Applied Mathematics And Mechanics

Abstract

Protective synchronization and generalized projective synchronization have recently been observed in the coupled chaotic systems. In this paper, a new synchronization, called “generalized projective synchronization”, is reported in the chaotic Lorenz system and the chaotic Chen one.

Key words

synchronization generalized synchronization synchronizer projective synchronization generalized projective synchronization 

2000 Mathematics Subject Classification

34D75 37D45 74H65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys. Rev. Lett., 1990, 64: 821–824.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Boccaletti S, Kurths J, Osipov G, et al. The synchronization of chaotic systems [J]. Phys. Rep., 2002, 366:1–101.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Gonzdlez- Miranda J M. Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving [J]. Phys. Rev. E, 1996, 53: R5–8.CrossRefGoogle Scholar
  4. [4]
    Mainieri R, Rehacek J. Projective synchronization in three-dimensional chaotic systems [J]. Phys. Rev. Lett., 1999, 82:3042–3045.CrossRefGoogle Scholar
  5. [5]
    Li Zhi-gang, Xu Dao-lin. Stability criterion for projective synchronization in three-dimensional chaotic systems [J]. Phys. Lett. A, 2001, 282:175–179.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Xu Dao-lin, Li Zhi-gang, Bishop S R. Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems [J]. Chaos, 2001, 11: 439–442.MATHCrossRefGoogle Scholar
  7. [7]
    Xu Dao-lin, La Zhi-gang. Controlled projective synchronization in nonpartially-linear chaotic systems [J]. Int. J. Bifur. Chaos, 2002, 12:1395–1402.CrossRefGoogle Scholar
  8. [8]
    Xu Dao-lin, Chee Chin-yi. Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension [J]. Phys. Rev. E, 2002, 66:046218.CrossRefGoogle Scholar
  9. [9]
    Xu Dao-lin, Ong Wee-leng, Li Zhi-gang. Criteria of the occurrence of projective synchronization in chaotic systems of arbitrary dimension [J]. Phys. Lett. A, 2002, 305:167–172.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Chee Chin-yi, Xu Dao-lin. Control of the formation of projective synchronization in lower-dimensional discrete-time systems [J]. Phys. Lett. A, 2003, 318:112–118.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Xu Dao-lin, Chee Chin-yi, Li Chang-pin. A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions [J]. Chaos, Solitons and Fractals, 2004, 22: 175–180.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Afraimovich V S, Verichev N N, Rabinovich M I. Izvestiya Vysshikh Uchebnykh Zavedenii Radiofizika [J]. 1986, 29(9): 1050–1060.MathSciNetGoogle Scholar
  13. [13]
    Rulkov N F, Sushchik M M, Tsimring L S, etal. Generalized synchronization of chaos in directionally coupled chaotic systems [J]. Phys. Rev. E, 1995, 51: 980–994.CrossRefGoogle Scholar
  14. [14]
    Kocarev L, Parlitz U. Synchronizing spatiotemporal chaos in coupled nonlinear oscillators [J]. Phys. Rev. Lett., 1996, 77: 2206–2209.CrossRefGoogle Scholar
  15. [15]
    Abarbanel H D I, Rulkov N F, Sushchik M M. Generalized synchronization of chaos: The auxiliary system approach [J]. Phys. Rev. E, 1996, 53: 4528–4535.CrossRefGoogle Scholar
  16. [16]
    Sparrow C. The Lorenz Equations, Bifurcation, Chaos, and Strange Attractors [M]. Springer-Verlag, New York, 1982.Google Scholar
  17. [17]
    Li Li-kang, Yu Chong-hua, Zhu Zheng-hua. Numerical Methods for Differential Equations [M]. Fudan University Press, Shanghai, 1999.Google Scholar
  18. [18]
    Chen Guan-Rong, Ueta T. Yet another chaotic attractor [J]. Int. J. Bifur. Chaos, 1999, 9: 1465–1466.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Li Chang-Pin, Chen Guan-Rong. A note on Hopf bifurcation in Chen’s system [J]. Int. J. Bifur. Chaos, 2003, 13: 1609–1615.MATHCrossRefGoogle Scholar
  20. [20]
    Li Chang-Pin, Peng Guo-jun. Chaos in the Chen’s system with a fractional order [J]. Chaos, Solitons and Fractals, 2004, 22: 443–450.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Yan Jian-ping, Li Chang-pin, On synchronization of three chaotic systems [J]. Chaos, Solitons and Fractals, 2005, 23: 1683–1688.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Shanghai University 2006

Authors and Affiliations

  • Yan Jian-ping 
    • 1
  • Li Chang-pin 
    • 1
  1. 1.Department of Mathematics, College of SciencesShanghai UniversityShanghaiP.R. China

Personalised recommendations