Micro-magnetic damage characterization of bent and cold forged parts

  • Lisa Samfaß
  • Nikolas BaakEmail author
  • Rickmer Meya
  • Oliver Hering
  • A. Erman Tekkaya
  • Frank Walther
Quality Assurance


Damage can have a strong impact on the fatigue performance of bulk formed parts for example produced by cold forging and sheet metal formed parts for example produced by bending. One suitable method to detect damage non-destructively in a time-efficient way is the micro-magnetic material characterization. In this paper, the suitability of harmonic analysis of the tangential magnetic field strength for the detection of damage in bent DP800-parts and cold forged 16MnCrS5-parts is discussed. For differently formed parts a correlation between the magnitude of damage and the behavior of the upper harmonics parameters is shown.


Damage characterization Micro-magnetic Upper harmonics Bending Cold forging 



The authors gratefully acknowledge the funding by the German Research Foundation (DFG) for the subprojects A02, A05 and B01 within the Collaborative Research Center CRC/Transregio 188 “Damage Controlled Forming Processes” (Project number: 278868966).


  1. 1.
    Anderson D, Butcher C, Pathak N, Worswick MJ (2017) Failure parameter identification and validation for a dual-phase 780 steel sheet. Int J Solids Struct 124:89–107. CrossRefGoogle Scholar
  2. 2.
    Baak N, Schaldach F, Nickel J, Biermann D, Walther F (2018) Barkhausen noise assessment of the surface conditions due to deep hole drilling and their influence on the fatigue behaviour of AISI 4140. Metals (Basel) 8:720. CrossRefGoogle Scholar
  3. 3.
    Borsutzki M, Thiessen R, Altpeter I, Dobmann G, Tschuncky R, Szielasko K (2010) Nondestructive characterisation of damage evolution in advanced high strength steels. In: 18th European conference on fracture: fracture of materials and structures from micro to macro scaleGoogle Scholar
  4. 4.
    Bridgman PW (1945) Effects of high hydrostatic pressure on the plastic properties of metals. Rev Mod Phys 17:2–4CrossRefGoogle Scholar
  5. 5.
    Cupka V, Nakagava T, Tiyamoto H (1973) Fine bending with counter pressure. Ann CIRP 22:73–74Google Scholar
  6. 6.
    Hering O, Dunlap A, Schwedt A, Tekkaya AE (2019) Characterization of damage in forward rod extruded parts. Eingereicht bei Int J Mater FormGoogle Scholar
  7. 7.
    Hering O, Tekkaya AE (2019) Damage-induced performance variations of cold forged parts. Eingereicht bei J Mater Process TechnolGoogle Scholar
  8. 8.
    Hoefnagels JPM, Tasan CC, Pradelle M, Geers MGD (2008) Brittle fracture-based experimental methodology for microstructure analysis. Appl Mech Mater 13–14:133–139. CrossRefGoogle Scholar
  9. 9.
    Hübschen G, Altpeter I, Tschuncky R, Herrmann H-G (2016) Materials characterization using nondestructive evaluation (NDE) methods. Elsevier, Amsterdam. CrossRefGoogle Scholar
  10. 10.
    Kempf RA, Sacanell J, Milano J, Guerra Méndez N, Winkler E, Butera A, Troiani H, Saleta ME, Fortis AM (2014) Correlation between radiation damage and magnetic properties in reactor vessel steels. J Nucl Mater 445:57–62. CrossRefGoogle Scholar
  11. 11.
    Lemaitre J (1985) A continuous damage mechanics model for ductils fracture. Trans ASME J Eng Mater Technol. CrossRefGoogle Scholar
  12. 12.
    Ludwik P (1926) Bestimmung der Reißfestigkeit aus der gleichmäßigen Dehnung. Zeitschrift für Met. 18:269–272Google Scholar
  13. 13.
    Matzenmiller A, Bröcker C, Gerlach S (2009) FE-Analysis of simultaneous hot/cold forging. Steel Res Int 80:130–136. CrossRefGoogle Scholar
  14. 14.
    Melikhov Y, Lo CCH, Jiles DC (2004) Magnetic nondestructive investigation of ferromagnetic alloys subjected to stress and fatigue. In: AIP conference proceedings. AIP, pp 1312–1319.
  15. 15.
    Meya R, Kusche C, Löbbe C, Al-Samman T, Korte-Kerzel S, Tekkaya A (2019) Global and high-resolution damage quantification in dual-phase steel bending samples with varying stress states. Metals (Basel) 9:319. CrossRefGoogle Scholar
  16. 16.
    Meya R, Löbbe C, Tekkaya AE (2019) Stress state analysis of radial stress superposed bending. Int J Precis Eng Manuf 20:53–66. CrossRefGoogle Scholar
  17. 17.
    Meya R, Löbbe C, Tekkaya AE (2019) Stress state control by a novel bending process and its effect on damage evolution and product performance. Int J Manuf Sci, Eng, p 141Google Scholar
  18. 18.
    Meya R, Löbbe C, Tekkaya AE (2018) Stress state control by a novel bending process and its effect on damage evolution. In: Proceedings of the 2018 manufacturing science and engineering conference MSEC, College Station, TexasGoogle Scholar
  19. 19.
    Mohr D (2015) Basic notions of fracture mechanics—Ductile fracture [WWW document]. ETH Zürich, Dep. Mech. Process Eng., ZürichGoogle Scholar
  20. 20.
    Palma ES, Mansur TR, Silva SF, Alvarenga A (2005) Fatigue damage assessment in AISI 8620 steel using Barkhausen noise. Int J Fatigue 27:659–665. CrossRefGoogle Scholar
  21. 21.
    Park D-G, Jeong H-T, Hong J-H (1999) A study on the radiation damage and recovery of neutron irradiated vessel steel using magnetic Barkhausen noise. J Appl Phys 85:5726–5728. CrossRefGoogle Scholar
  22. 22.
    Remmers WE (1930) Causes of cuppy wire. Trans Metall Soc AIME 89:107–120Google Scholar
  23. 23.
    Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217. CrossRefGoogle Scholar
  24. 24.
    Rogers HC (1960) The tensile fracture of ductile metals. Trans Metall Soc AIME 218:498–506Google Scholar
  25. 25.
    Sagar S, Parida N, Das S, Dobmann G, Bhattacharya D (2005) Magnetic Barkhausen emission to evaluate fatigue damage in a low carbon structural steel. Int J Fatigue 27:317–322. CrossRefGoogle Scholar
  26. 26.
    Samfaß L, Walther F (2018) Einfluss umformtechnisch induzierter Schädigung auf das Ermüdungsverhalten und die magnetischen Werkstoffeigenschaften des Stahls 16MnCrS5, Werkstoffprüfung 2018—Werkstoffe und Bauteile auf dem Prüfstand. G. Moninger, StahleisenGoogle Scholar
  27. 27.
    Schiefenbusch J (1983) Untersuchungen zur Verbesserung des Umformverhaltens von Blechen beim Biegen. Dr.-Ing. Dissertation, TU DortmundGoogle Scholar
  28. 28.
    Szielasko K, Youssef S, Wolter B, Schuppmann M, Rodner C, Weingard C, Kopp H, Elzatma M, Mironenko I, Kiselmann I (2014) High-speed-3MA zur mikromagnetischen Werkstofffcharakterisierung in schnellen Produktionsprozessen. In: DGZfP-Jahrestagung, Mo.3.A.4, BerlinGoogle Scholar
  29. 29.
    Tekkaya AE, Allwood JM, Bariani PF, Bruschi S, Cao J, Gramlich S, Groche P, Hirt G, Ishikawa T, Löbbe C, Lueg-Althoff J, Merklein M, Misiolek WZ, Pietrzyk M, Shivpuri R, Yanagimoto J (2015) Metal forming beyond shaping: predicting and setting product properties. CIRP Ann Manuf Technol 64:629–653. CrossRefGoogle Scholar
  30. 30.
    Tekkaya AE, Ben Khalifa N, Hering O, Meya R, Myslicki S, Walther F (2017) Forming-induced damage and its effects on product properties. CIRP Ann Manuf Technol 66:281–284. CrossRefGoogle Scholar
  31. 31.
    Tränkler H-R, Reindl LM (2014) Sensortechnik, VDI-Buch. Springer, Berlin. CrossRefGoogle Scholar
  32. 32.
    Tschunky R (2011) Sensor- und geräteunabhängige Kalibrierung elektromagnetischer zerstörungsfreier Prüfverfahren zur praxisorientierten WerkstoffcharakterisierungGoogle Scholar
  33. 33.
    Vashista M, Moorthy V (2013) Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic Barkhausen noise profile. J Magn Magn Mater 345:208–214. CrossRefGoogle Scholar
  34. 34.
    Wierzbicki T, Bao Y, Lee Y-W, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47:719–743. CrossRefGoogle Scholar
  35. 35.
    Zhong Z, Hung NP (2002) Grinding of alumina/aluminum composites. J Mater Process Technol 123:13–17. CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  1. 1.Fachgebiet Werkstoffprüftechnik (WPT)TU DortmundDortmundGermany
  2. 2.Institut für Umformtechnik und Leichtbau (IUL)TU DortmundDortmundGermany

Personalised recommendations