Production Engineering

, Volume 13, Issue 6, pp 731–741 | Cite as

Manufacturing and preparation of micro cutting tools: influence on chip formation and surface topography when micro cutting titanium

  • Frank Schneider
  • Christian Effgen
  • Benjamin KirschEmail author
  • Jan C. Aurich
Production Process


Cutting edge preparation is widely used in conventional cutting processes. It stabilizes the cutting edge and is done to improve coating adhesion. However, the preparation of the cutting edge is accompanied by an increase in cutting edge roundness. This rounding results into larger effective negative rake angles, especially at small undeformed chip thicknesses, as they prevail in micro and ultraprecision processes. In this paper, the influence of the cutting edge micro geometry at very small undeformed chip thicknesses is investigated. A sharp, a rounded and a chamfered cutting edge are manufactured and examined at undeformed chip thicknesses of 0.4 µm, 5.2 µm and 10.0 µm. The resulting chip formation, forces and surface quality are examined when orthogonal cutting commercially pure titanium, a material used for example for bio-applications.


Micro cutting Tool grinding Cutting edge preparation Chip formation Surface topography 

List of symbols


Chip cross section


Local width of cut


Nominal width of cut


Cutting width


Tool diameter


Cutting force


Thrust force




Undeformed chip thickness


Chip thickness


Chamfer width


Center line average roughness


Cutting edge radius


Profile flattening


Cutting edge width


Cutting edge depth

Average cutting edge rounding


Cutting edge segment on rake face


Cutting edge segment on flank face


Cutting speed


Clearance angle


Rake angle


Chamfer angle


Effective rake angle




Ratio between cutting edge radius and undeformed chip thickness


Average standard deviation


Cone angle


Apex angle



Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)–Project number 172116086—SFB 926.


  1. 1.
    Daumen J (2001) Mikrogeometrie–Potential beim Hartdrehen. Werkstatt und Betrieb 135(5):25–28Google Scholar
  2. 2.
    Thiele JD, Melkote SN (1999) Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel. J Mater Process Technol 94(2-3):216–226CrossRefGoogle Scholar
  3. 3.
    Shintani K, Ueki M, Fujimura Y (2003) Optimum tool geometry of CBN tool for continuous turning of carburized steel. Int J Mach Tools Manuf 29(3):403–413CrossRefGoogle Scholar
  4. 4.
    Terwey I (2011) Steigerung der Leistungsfähigkeit von Vollhartmetallwendelbohrern durch Strahlspanen. Dissertation, Technische Universität DortmundGoogle Scholar
  5. 5.
    Bassett E, Köhler J, Denkena B (2012) On the honed cutting edge and its side effects during orthogonal turning operations of AISI1045 with coated WC-CO inserts. CIRP J Manuf Sci Technol 5:108–126CrossRefGoogle Scholar
  6. 6.
    Risse K (2006) Einflüsse von Werkzeugdurchmesser und Schneidkantenverrundung beim Bohren mit Wendelbohrern in Stahl. Dissertation, Rheinisch-Westfälische Technische Hochschule AachenGoogle Scholar
  7. 7.
    Denkena B, Köhler J, Ventura CEH (2013) Customized cutting edge preparation by means of grinding. Precis Eng 37:590–598CrossRefGoogle Scholar
  8. 8.
    Aurich JC, Effgen C (2015) Influence of the machining conditions when preparing cutting edges with elastic bonded grinding wheels. Prod Eng Res Dev 9:329–336CrossRefGoogle Scholar
  9. 9.
    Aurich JC, Zimmermann M, Leitz L (2011) The preparation of cutting edges using a marking laser. Prod Eng Res Dev 5:17–24CrossRefGoogle Scholar
  10. 10.
    Uhlmann E, Löwenstein A, Mahr F, Oberschmidt D (2011) Schneidkanten-präparation von Mikrofräsern. wt Werkstattstechnik online 101(1/2):73–80Google Scholar
  11. 11.
    Uhlmann E, Oberschmidt D, Kuche Y, Löwenstein A, Winker I (2016) Effects of different cutting edge preparation methods on micro milling performance Procedia CIRP 46—7th CIRP conference on high performance cutting, pp 352–355CrossRefGoogle Scholar
  12. 12.
    Uhlmann E, Oberschmidt D, Kuche Y, Löwenstein A (2014) Cutting Edge Preparation of Micro Milling Tools. Procedia CIRP 14–6th CIRP conference on high performance cutting, pp 349–354CrossRefGoogle Scholar
  13. 13.
    Uhlmann E, Oberschmidt D, Löwenstein A, Kuche Y (2016) Cutting Influence of cutting edge preparation on the performance of micro milling tools. In: Proceedia CIRP 46—7th CIRP conference on high performance, pp 214–217Google Scholar
  14. 14.
    Löwenstein A (2014) Steigerung der Wirtschaftlichkeit beim Mikrofräsen durch Schneidkantenpräparation mittels Tauchgleitläppen. Berichte aus dem Produktionstechnischen Zentrum Berlin. Hrsg.: Uhlmann, E. Stuttgart: FraunhoferGoogle Scholar
  15. 15.
    Miyamoto I, Ezawa T, Nishimura K (1990) Ion beam machining of single-point diamond tools for nano-precision turning. Nanotechnology 1:44–49CrossRefGoogle Scholar
  16. 16.
    Vollertsen F (2008) Categories of size effects. Prod Eng Res Dev 2:377–383CrossRefGoogle Scholar
  17. 17.
    Furukawa Y, Moronuki N (1988) Effect of material properties on ultra precise cutting processes. CIRP Ann Manuf Technol 37(1):113–116CrossRefGoogle Scholar
  18. 18.
    Moriwaki T, Shamoto E (1991) Ultra precision diamond turning of stainless steel by applying ultrasonic vibration. CIRP Ann Manuf Technol 40(1):559–562CrossRefGoogle Scholar
  19. 19.
    Lucca DA, Rhorer RL, Komanduri R (1991) Energy dissipation in the ultraprecision machining of copper. CIRP Ann Manuf Technol 40(1):69–72CrossRefGoogle Scholar
  20. 20.
    Kim J-D, Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J Mater Process Technol 49:387–398CrossRefGoogle Scholar
  21. 21.
    Xu G (1996) Einfluss der Schneidkantenform auf die Oberflächenausbildung beim Hochgeschwindigkeitsfräsen mit Feinkornhartmetall. Dissertation, Technische Hochschule DarmstadtGoogle Scholar
  22. 22.
    Palmer WB, Oxley PLB (1959) Mechanics of orthogonal machining. Proc Inst Mech Eng 173(24):623–636CrossRefGoogle Scholar
  23. 23.
    Biermann D, Baschin A (2009) Influence of cutting edge geometry and cutting edge radius on the stability of micromilling processes. Prod Eng Res Dev 3:375–380CrossRefGoogle Scholar
  24. 24.
    Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63(2):631–653CrossRefGoogle Scholar
  25. 25.
    Yuan ZJ, Zhou M, Dong S (1996) Effect of diamond tool sharpness of minimum cutting thickness and cutting surface integrity in ultraprecision machining. J Mater Process Technol 62:327–330CrossRefGoogle Scholar
  26. 26.
    Zhang SJ, To S, Wang SJ, Zhu ZW (2015) A review of surface roughness generation in ultra-precision machining. Int J Mach Tools Manuf 91:76–95CrossRefGoogle Scholar
  27. 27.
    Kalyan C, Samuel GL (2015) Cutting mode analysis in high speed finish turning of AlMgSi alloy using edge chamfered PCS tools. J Mater Process Technol 216:146–159CrossRefGoogle Scholar
  28. 28.
    Wyen C-F, Wegener K (2010) Influence of cutting edge radius in cutting forces in machining titanium. CIRP Ann Manuf Technol 59:93–96CrossRefGoogle Scholar
  29. 29.
    Heidari M, Yan J (2018) Nanometer-scale chip formation and surface integrity of pure titanium in diamond turning. Int J Adv Manuf Technol 95:479–492CrossRefGoogle Scholar
  30. 30.
    Denkena B, Reichenstein M, Brodehl J, Garcia de Leon L (2005) Surface preparation, coating and wear performance of geometrically defined cutting edges. In: Proceedings of the 5th international conference “The coatings in manufacturing engineering”Google Scholar
  31. 31.
    Cortes RCJ (2009) Cutting edge preparation of precision cutting tools by applying micro-abrasive jet machining and brushing. Dissertation, Universität KasselGoogle Scholar
  32. 32.
    Aurich JC, Bohley M, Reichenbach IG, Kirsch B (2017) Surface quality in micro milling: influences of spindle and cutting parameters. CIRP Ann Manuf Technol 66(1):101–104CrossRefGoogle Scholar
  33. 33.
    Schneider F, Lohkamp R, Sousa FJP, Müller R, Aurich JC (2014) Analysis of the surface integrity in ultra-precision cutting of cp-titanium by investigating the chip formation. In: Procedia CIRP 13—proceedings of the 2nd CIRP conference on surface integrity (CSI), pp 55–60CrossRefGoogle Scholar
  34. 34.
    DIN EN ISO 4287: Geometrische Produktspezifikation (GPS)—Oberflächenbeschaffenheit: Tastschnittverfahren—Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit (ISO 4287:1997 + Cor 1:1998 + Cor 2:2005 + Amd 1:2009)Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  • Frank Schneider
    • 1
  • Christian Effgen
    • 1
  • Benjamin Kirsch
    • 1
    Email author
  • Jan C. Aurich
    • 1
  1. 1.Institute for Manufacturing Technology and Production Systems, Department of Mechanical and Process EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations