Production Engineering

, Volume 13, Issue 5, pp 607–616 | Cite as

Analysis and simulation of process damping in HPC milling

  • F. WösteEmail author
  • J. Baumann
  • P. Wiederkehr
  • T. Surmann
Production Process


The use of tools with chamfered cutting edges is an essential part of high performance cutting (HPC) as a rough milling process strategy for manufacturing structural components in the aerospace industry. Due to an interaction between the chamfer and the undulated workpiece surface, tool vibrations can be damped allowing high depths of cut without the occurrence of harmful dynamic effects. Hence, a significant increase in efficiency is possible. As a result of process damping, the stability boundary predicted by linear stability analysis provided for instance by analytical or geometric physically-based simulations will generally underestimate the experimentally determined one. Consequently, the object of this procedure, namely to reduce the number of test runs until sufficient process parameter values are determined, could not be met. Therefore, the damping effect induced by chamfered tools was analysed in this paper. It is shown that the use of chamfered cutting edges leads to a significant limitation of chatter amplitudes when exceeding the stability limit. The strength of this effect depends on the cutting speed and the engagement situation, which influence the intensity and number of interactions between the chamfer and the workpiece surface and, thus, the resulting process damping. Moreover, a dynamic process damping model presented in the literature was chosen and implemented in a geometric physically-based milling simulation. An evaluation of its validity points out the challenges regarding the simulation of process damping.


HPC milling Process damping Chamfered cutting edge Stability prediction Milling simulation 



  1. 1.
    Martin P (2013) Produktion im Flugzeugbau—technisch anspruchsvolle Herstellungsverfahren in komplexen Leistungserbringungsprozessen, Impulsgeber Luftfahrt. In: Hinsch M, Olthoff J (eds) Industrial Leadership durch luftfahrtspezifische Aufbau- und Ablaufkonzepte. Springer, Berlin Heidelberg, pp 159–189Google Scholar
  2. 2.
    Lange M (2005) Hochleistungsfräsen von Aluminium-Bauteilen für den Flugzeugbau. In: Weinert K (ed) Spanende Fertigung, 4th edn. Vulkan, Essen, pp 59–67Google Scholar
  3. 3.
    Lange M (2012) Herausforderungen bei der spanenden Hochleistungsbearbeitung metallischer Flugzeugbauteile. In: Biermann D (ed) Spanende Fertigung, 6th edn. Vulkan, Essen, pp 67–76Google Scholar
  4. 4.
    Sellmeier V (2012) Über den Einfluss der Werkzeuggestalt auf die dynamische Stabilität des Fräsprozesses. Dissertation, Gottfried Wilhelm Leibnitz University HannoverGoogle Scholar
  5. 5.
    Sellmeier V, Denkena B (2012) High speed process damping in milling. CIRP J Manuf Sci Technol 5:8–19CrossRefGoogle Scholar
  6. 6.
    Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. Ann CIRP 53(2):619–642CrossRefGoogle Scholar
  7. 7.
    Munoa J, Beudaert X, Dombovari Z et al (2016) Chatter suppression techniques in metal cutting. Ann CIRP 65(2):785–808CrossRefGoogle Scholar
  8. 8.
    Altintas Y (2012) Manufacturing automation, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Insperger T, Stepan G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Eng 55:503–518MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schmitz TL, Smith KS (2009) Machining dynamics. Springer, New YorkCrossRefGoogle Scholar
  11. 11.
    Surmann T (2005) Geometrisch-physikalische Simulation der Prozessdynamik für das fünfachsige Fräsen von Freiformflächen, Dissertation, Technical University of DortmundGoogle Scholar
  12. 12.
    Wu DW (1989) A new approach of formulating the transfer function for dynamic cutting processes. ASME J Eng Ind 111:37–47CrossRefGoogle Scholar
  13. 13.
    Sisson TR, Kegg RL (1969) An explanation of low-speed chatter effects. J Eng Ind 91(4):951–958CrossRefGoogle Scholar
  14. 14.
    Altintas Y, Eynian M, Onozuka H (2008) Identification of dynamic cutting force coefficients and chatter stability with process damping. Ann CIRP 57:371–374CrossRefGoogle Scholar
  15. 15.
    Tyler CT, Troutman JR, Schmitz TL (2016) A coupled dynamics, multiple degree of freedom process damping model, Part 2: milling. Precis Eng 46:73–80CrossRefGoogle Scholar
  16. 16.
    Ahmadi K, Ismail F (2011) Analytical stability lobes including nonlinear process damping effect on machining chatter. Int J Mach Tools Manuf 51(4):296–308CrossRefGoogle Scholar
  17. 17.
    Ahmadi K, Ismail F (2012) Stability lobes in milling including process damping and utilizing multi-frequency and semi-discretization methods. Int J Mach Tools Manuf 54–55:46–54CrossRefGoogle Scholar
  18. 18.
    Budak E, Tunc LT (2009) A new method for identification and modeling of process damping in machining. J Manuf Sci Eng 131(5):1–10CrossRefGoogle Scholar
  19. 19.
    Budak E, Tunc LT (2010) Identification and modeling of process damping in turning and milling using a new approach. Ann CIRP 59:403–408CrossRefGoogle Scholar
  20. 20.
    Tunc LT, Budak E (2012) Effect of cutting conditions and tool geometry on process damping in machining. Int J Mach Tools Manuf 57:10–19CrossRefGoogle Scholar
  21. 21.
    Ahmadi K, Altintas Y (2014) Identification of machining process damping using output-only modal analysis. J Manuf Sci Eng 136(5):051017-1–051017-13CrossRefGoogle Scholar
  22. 22.
    Surmann T (2017) Simulation der Dynamik von Dreh- und Fräsprozessen. Vulkan, EssenGoogle Scholar
  23. 23.
    Foley J, Feiner S, Hughes J (1993) Introduction to computer graphics. Addison-Wesley, ReadingzbMATHGoogle Scholar
  24. 24.
    Weinert K, Surmann T (2003) Geometric simulation of the milling process for free formed surfaces. In: Weinert K (ed) Simulation aided offline process design and optimization in manufacturing sculptured surfaces, Witten 27:21–30Google Scholar
  25. 25.
    Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z 94(11):299–305Google Scholar
  26. 26.
    Haake F (1982) Einführung in die Theoretische Physik. Physik-Verlag, WeinheimGoogle Scholar
  27. 27.
    Surmann T, Biermann D, Kehl G (2008) Oscillator model of machine tools for the simulation of self excited vibrations in machining processes. In: Proceedings of the 1st international conference on process machine interactions, Hannover, Germany, pp 23–29Google Scholar
  28. 28.
    DIN 6580 (German Institute for Standardization) (1985) Terminology of chip removing; movements and geometry of the chip removing process. Beuth Verlag, BerlinGoogle Scholar
  29. 29.
    Denkena B, Bickel W, Grabowski R (2014) Modeling and simulation of milling processes including process damping effects. Product Eng 8:453–459CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  • F. Wöste
    • 1
    Email author
  • J. Baumann
    • 2
  • P. Wiederkehr
    • 1
    • 2
  • T. Surmann
    • 3
  1. 1.Virtual Machining, Computer Science XIVTU Dortmund UniversityDortmundGermany
  2. 2.Institute of Machining Technology (ISF)TU Dortmund UniversityDortmundGermany
  3. 3.Premium AEROTEC GmbHVarelGermany

Personalised recommendations