Advertisement

Production Engineering

, Volume 13, Issue 2, pp 169–180 | Cite as

Investigations on residual stress generation in full-forward-extrusion

  • Philipp LandkammerEmail author
  • Andreas Jobst
  • Christoph Kiener
  • Paul Steinmann
  • Marion Merklein
Production Process
  • 50 Downloads

Abstract

Within cold-forming processes, the influence of forming induced residual stresses is a critical issue regarding the life-time behaviour of the formed components. However, a targeted use of forming-induced residual stresses is also capable to improve the components properties. The rotation-symmetrical full-forward extrusion is used as a reference process to investigate the generation of residual stresses within manufacturing. A novel and generally applicable computational evaluation procedure is introduced, which achieves to compute and visualize the evolution of the residual stress state during the entire forming operation. Simulative results are compared with their experimental counterparts. The near-surface residual stresses in the formed component are evaluated in axial and tangential direction by X-ray diffraction. Indentation tests are used to determine the micro-hardness inside the components and optical instruments quantify geometrical differences.

Keywords

Residual stresses Full-forward-extrusion Experimental validation Advanced post processing 

Notes

Acknowledgements

Our research activities are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the scope of the priority program SPP2013 - Targeted Use of Forming Induced Residual Stresses in Metal Components in the subproject P10 (project number: 374688875).

References

  1. 1.
    Macherauch E, Hauk V (1987) Residual Stresses in Science and Technology. vol 1 and 2. DGM-Informationsgesellschaft, OberurselGoogle Scholar
  2. 2.
    Denks IA (2008) Entwicklung einer Methodik zur Erfassung randschichtnaher Eigenspannungsverteilungen σ(z) in polykristallinen Werkstoffen mittels energiedispersiver Diffraktion. Dissertation, Universität Kassel, University Press, KasselGoogle Scholar
  3. 3.
    Billigmann J, Feldmann H (1973) Stauchen und Pressen–Handbuch für das Kalt- und warm-massivumformen von stählen und nichteisenmetallen. Carl Hanser Verlag, MünchenGoogle Scholar
  4. 4.
    Macherauch E, Wohlfarth H, Wolfstieg U (1973) Zur zweckmäßigen Definition von Eigenspannungen. Härterei Tech Mitteilungen 28:201–211Google Scholar
  5. 5.
    Niku-Lari A (1987) Advances in surface treatments: technology—applications—effects. In: Residual stresses, vol 4. Pergamon Press, OxfordGoogle Scholar
  6. 6.
    Tekkaya AE, Gerhardt J, Burgdorf M (1985) Residual stresses in cold-formed workpieces. Ann CIRP 34(1):225–230CrossRefGoogle Scholar
  7. 7.
    Steinmann P (2015) Geometrical Foundations of Continuum Mechanics. Springer, Berlin HeidelbergCrossRefzbMATHGoogle Scholar
  8. 8.
    Tekkaya AE (1986) Ermittlung von Eigenspannungen in der Kaltmassivumformung. Dissertation, Band 83 von IFU - Berichte aus dem Institut für Umformtechnik der Universität Stuttgart. Springer, Berlin, HeidelbergGoogle Scholar
  9. 9.
    Wang Z, Gong B (2002) Residual stress in the forming of materials, handbook of residual stress and deformation of steel. In: Totten G (ed) Handbook of residual stress and deformation. Materials Park, OhioGoogle Scholar
  10. 10.
    Tekkaya AE (2000) State-of-the-art of simulation of sheet metal forming. J Mat Prod Tech 103:14–22CrossRefGoogle Scholar
  11. 11.
    Lacarac V, Chang CC, Bramley AN, Tierney MJ, McMahon CA, Smith DJ (2004) Predictions and measurements of residual stresses from forging and heat treatment. Proc Inst Mech Eng Part B J Eng Manuf 218(3):301–313CrossRefGoogle Scholar
  12. 12.
    Tekkaya AE (2005) A guide for validation of FE simulations in bulk metal forming. Arab J Sc Engrg 30-1C:113–136Google Scholar
  13. 13.
    ICFG-Document 4/82 (1983) General aspects of tool design and tool materials for cold and warm forging. Portcullis Press Ltd., RedhillGoogle Scholar
  14. 14.
    ICFG-Document 5/82 (1983) Calculation methods for cold forging tools. Portcullis Press Ltd., RedhillGoogle Scholar
  15. 15.
    ICFG-Document 6/82 (1983) General recommendations for design, manufacture and operational aspects of cold extrusion tools for steel. Portcullis Press Ltd., RedhillGoogle Scholar
  16. 16.
    DIN EN 10263-5:2002-02 (2001) Steel rod, bars and wire for cold heading and cold extrusion—part 5: technical delivery conditions for stainless steels. German Version EN 10263(5): 2001Google Scholar
  17. 17.
    DIN 50106:2016-11. Testing of metallic materials—compression test at room temperatureGoogle Scholar
  18. 18.
    Hockett J, Sherby O (1975) Large strain deformation of polycrystalline metals at low homologous temperatures. Int J Mech Phys Sol 23(2):87–98CrossRefGoogle Scholar
  19. 19.
    Steenberg T, Christensen E, Bjerrum NJ, Bay N, Wibom O (2000) Cold forging of stainless steel with FeCl3 based lubricants. Lubr Eng 56(6):26–30Google Scholar
  20. 20.
    Ruud C (2002) Measurement of Residual stress. In: Totten G (ed) Handbook of residual stress and deformation. Materials Park, OhioGoogle Scholar
  21. 21.
    Bragg WH (1913) The reflection of X-rays by crystals. Proc R Soc 88(605):428–438CrossRefGoogle Scholar
  22. 22.
    Fitzpatrick ME, Fry AT, Holdway P, Kandil FA, Shackleton J, Suominen L (2005) Determination of residual stresses by X-ray diffraction—issue 2. Measurement Good Practice Guide No. 52. National Physical Laboratory, TeddingtonGoogle Scholar
  23. 23.
    Eigenmann B, Macherauch E (1995) Röntgenographische Untersuchungen von Spannungszuständen in Werkstoffen, Teil I. Mat Wiss Werkstofftechn 26:148–160CrossRefGoogle Scholar
  24. 24.
    DIN EN 15305_2009-01. Non-destructive testing—test method for residual stress analysis by X-ray diffraction. German version EN 15305:2008Google Scholar
  25. 25.
    Jenkins R (1995) Quantitative X-ray spectometry, Second edn. Dekker, New YorkGoogle Scholar
  26. 26.
    Eigenmann B, Macherauch E (1995) Röntgenographische Untersuchungen von Spannungszuständen in Werkstoffen, Teil II. Mat Wiss Werkstofftechn 26:199–216CrossRefGoogle Scholar
  27. 27.
    Eigenmann B, Macherauch E (1995) Röntgenographische Untersuchungen von Spannungszuständen in Werkstoffen, Teil III. Mat Wiss Werkstofftechn 27:426–437CrossRefGoogle Scholar
  28. 28.
    Hinkfoth R (2003) Bulk forming processes. Verlagshaus Mainz GmbH, AachenGoogle Scholar
  29. 29.
    DIN EN ISO 14577:2015-11 (2015) Metallic materials—instrumented indentation test for hardness and materials parameters—part 1: test method German Version EN ISO 14577(1):2015Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  • Philipp Landkammer
    • 1
    Email author
  • Andreas Jobst
    • 2
  • Christoph Kiener
    • 2
  • Paul Steinmann
    • 1
  • Marion Merklein
    • 2
  1. 1.Institute of Applied MechanicsErlangenGermany
  2. 2.Institute of Manufacturing TechnologyErlangenGermany

Personalised recommendations