Production Engineering

, Volume 13, Issue 3–4, pp 317–324 | Cite as

Methodology for integrative production planning in highly dynamic environments

  • B. Denkena
  • M.-A. Dittrich
  • S. JacobEmail author
Production Management


Flexibility has become one of the most important characteristics in modern manufacturing. As a result, process chains must be highly adaptable to varying demands and to new products. Furthermore, many process chains contain external processes from suppliers to handle the fluctuating process utilisation. Moreover, novel manufacturing processes that allow an even higher flexibility, such as additive manufacturing, have been introduced. In order to identify optimal parameters for flexible process chains and considering interactions between processes, a new approach for production planning is necessary. This article presents a methodology for integrative production planning in highly dynamic environments thereof. The introduced methodology is applied on two industrial use cases with the aim of identifying optimal process elements and parameters taking production costs and time under consideration. The results show that the developed methodology allows for successful modelling and optimisation of the process chain.


Production planning and control Process planning Process chain optimisation Additive manufacturing Process model 



The authors thank the German Research Foundation (DFG) for its financial and organizational support of the project “Ganzheitliche Auslegung und Optimierung von Fertigungsprozessketten unter Berücksichtigung unternehmensexterner Herstellungsprozesse” (DE 447/134-1).


  1. 1.
    Wiendahl HP, ElMaraghy HA, Zaeh MF, Wiendahl HH, Duffie N, Kolakowski M (2007) Changeable manufacturing—classification, design, operation. Ann CIRP 56:783–809. CrossRefGoogle Scholar
  2. 2.
    Abele E, Elzenheimer J, Liebeck T, Meyer T (2006) Globalization and decentralization of manufacturing. In: Dashchenko AI (ed) Reconfigurable manufacturing systems. Springer, Berlin, pp 3–13CrossRefGoogle Scholar
  3. 3.
    Nyhuis P, Wulf S, Klemke T, Benjamin B (2010) Integrative factory, technology, and product planning-systemizing the information transfer on the operational level. Prod Eng Res Dev 4:231–237. CrossRefGoogle Scholar
  4. 4.
    Mehrabi MG, Ulsoy AG, Koren Y, Heytler P (2002) Trends and perspectives in flexible and reconfigurable manufacturing systems. J Intell Manuf 13:135–146. CrossRefGoogle Scholar
  5. 5.
    Denkena B, Mörke T (2017) Cyber-physical and gentelligent systems in manufacturing and life cycle. Academic Press, CambridgeGoogle Scholar
  6. 6.
    Hees A, Reinhart G (2015) Approach for production planning in reconfigurable manufacturing systems. Conf Intell Comput Manuf Eng 33:70–75. Google Scholar
  7. 7.
    Denkena B, Lorenzen LE, Schmidt J (2012) Adaptive process planning. Prod Eng Res Dev 6:55–67. CrossRefGoogle Scholar
  8. 8.
    Ponche R, Kerbrat O, Mognol P, Hascoet JY (2014) A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process. Robot Comput Integr Manuf 30:389–398. CrossRefGoogle Scholar
  9. 9.
    Schmidt M, Merklein M, Bourell D, Dimitrov D, Hausotte T, Wegener K, Overmeyer L, Vollertsen F, Levy GN (2017) Laser based additive manufacturing in industry and academia. Ann CIRP 66:561–583. CrossRefGoogle Scholar
  10. 10.
    Newman ST, Zhu Z, Dhokia V, Shokrani A (2015) Process planning for additive and subtractive manufacturing technologies. Ann CIRP 64:467–470. CrossRefGoogle Scholar
  11. 11.
    Brandes A, Apitz R, Zwick M (2002) From single steps to a comprehensive process chain. Ann DAAAM 13:63–64Google Scholar
  12. 12.
    Eversheim W (2002) Organisation in der Produktionstechnik 3: Arbeitsvorbereitung. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Henning H (2012) Modellbasierte Prozess-Adaption in der Feinplanung fertigungstechnischer Prozessketten. Dissertation, Universität HannoverGoogle Scholar
  14. 14.
    Eichgrün K (2003) Prozesssicherheit in fertigungstechnischen Prozessketten - Systemanalyse, ganzheitliche Gestaltung und Führung. Dissertation, Universität KaiserslauternGoogle Scholar
  15. 15.
    Schäfer L (2003) Analyse und Gestaltung fertigungstechnischer Prozessketten - Konzept zur datenbasierten Ermittlung qualitätswirksamer Einfluss-Ursache-Wirkzusammenhänge und zur Ableitung von Maßnahmen zur Prozesssicherung. Dissertation, Universität KaiserslauternGoogle Scholar
  16. 16.
    Mukerjee I, Ray PK (2006) A review of optimization techniques in metal cutting processes. Comput Ind Eng 50:15–34. CrossRefGoogle Scholar
  17. 17.
    Denkena B, Henjes J, Henning H (2011) Simulation-based dimensioning of manufacturing process chains. J Manuf Sci Technol 4:9–14. CrossRefGoogle Scholar
  18. 18.
    Hoang XL et al (2017) Modeling of interdependencies between products, processes and resources to support the evolution of mechatronic systems. IFAC PapersOnLine 50:4348–4353. CrossRefGoogle Scholar
  19. 19.
    Tönshoff HK, Denkena B, Friemuth T, Zwick M, Brandes A (2002) Technological interfaces of industrial process chains. Prod Eng Res Dev 9:43–46Google Scholar
  20. 20.
    Hees A, Bayerl C, Van Vuuren B, Schutte CSL, Braunreuther S, Reinhart G (2017) A production planning method to optimally exploit the potential of reconfigurable manufacturing systems. Conf Intell Comput Manuf Eng 62:181–186. Google Scholar
  21. 21.
    Denkena B, Henjes J, Lorenzen LE (2011) Adaptive process chain optimisation of manufacturing systems. In: ElMaraghy H (ed) Enabling manufacturing competitiveness and economic sustainability: International conference on changeable, agile, reconfigurable and virtual production, vol 4. Springer, Berlin, Heidelberg, pp 184–188. Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  1. 1.Institute of Production Engineering and Machine ToolsGarbsenGermany

Personalised recommendations