Practice-oriented methodology for reallocating production technologies to production locations in global production networks

  • S. TreberEmail author
  • E. Moser
  • S. Helming
  • B. Haefner
  • G. Lanza
Production Management


An increasingly uncertain and dynamic competitive environment is challenging industrial companies nowadays. Against this backdrop, companies are focusing on their core competences. They organize their production in global production networks. While the competitiveness of production networks could be maintained for a long time by optimizing individual production sites, the overall network is increasingly becoming the focus of attention. In particular, the elimination of redundant production technologies offers the potential to exploit economies of scale, to bundle technology-specific competences and to achieve an increase in efficiency. The purely mathematical optimization models disseminated in research are unable to consider all the sub tasks of planning. For this reason, this article proposes a practice oriented methodology for reallocating production technologies to production locations in global production networks. The procedure consists of three phases: the investigation of current production technology-to-site allocation in the production network, the generation and planning of alternative reallocations as well as the evaluation of reallocations. For testing its practical suitability, the procedure is exemplary applied to the global production network for forging processes of a medical device manufacturer.


Global production network Reallocation Scenario planning 



This research work was funded by the German Research Foundation (DFG) within the research project “Methodical decision support for dynamic allocation planning of product variants in global manufacturing networks” (LA 2351/49-1). We thank the DFG for promoting and facilitating the research.


  1. 1.
    Wiendahl H-P, ElMaraghy HA, Nyhuis P et al (2007) Changeable manufacturing—classification, design and operation. CIRP Ann 56(2):783–809. CrossRefGoogle Scholar
  2. 2.
    Mourtzis D, Doukas M, Psarommatis F (2015) A toolbox for the design, planning and operation of manufacturing networks in a mass customisation environment. J Manuf Syst 36:274–286. CrossRefGoogle Scholar
  3. 3.
    Abele E, Meyer T, Näher U et al (eds) (2008) Global production: a handbook for strategy and implementation. Springer, Berlin HeidelbergGoogle Scholar
  4. 4.
    Ferdows K (2018) Keeping up with growing complexity of managing global operations. Int J Prod Operat Manag 38(2):390–402. MathSciNetCrossRefGoogle Scholar
  5. 5.
    Váncza J (2016) Production Networks. In: Laperrière L, Reinhart G (eds) CIRP encyclopedia of production engineering. Springer, BerlinGoogle Scholar
  6. 6.
    Moser E, Stricker N, Lanza G (2016) Risk Efficient Migration Strategies for Global Production Networks. Procedia CIRP 57:104–109. CrossRefGoogle Scholar
  7. 7.
    Friedli T, Lanza G, Schuh G et al (2017) Active design of production networks. ZWF 112(5):279–283. CrossRefGoogle Scholar
  8. 8.
    Wiendahl H-P, Lutz S (2002) Production in networks. CIRP Ann 51(2):573–586. CrossRefGoogle Scholar
  9. 9.
    Treber S, Lanza G (2018) Transparency in global production networks: improving disruption management by increased information exchange. Procedia CIRP 72:898–903. CrossRefGoogle Scholar
  10. 10.
    Kádár B, Egri P, Pedone G et al (2018) Smart, simulation-based resource sharing in federated production networks. CIRP Ann 67(1):503–506. CrossRefGoogle Scholar
  11. 11.
    Friedli T, Mundt A, Thomas S (2014) Strategic management of global manufacturing networks: aligning strategy, configuration, and coordination. Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    Neuner C (2009) Konfiguration internationaler Produktionsnetzwerke unter Berücksichtigung von Unsicherheit. Zugl.: Bayreuth, Univ Diss, 2009, 1. Aufl. Gabler Research Schriften zum europäischen Management. Gabler Verlag / GWV Fachverlage GmbH Wiesbaden, WiesbadenGoogle Scholar
  13. 13.
    Hochdörffer J, Berndt CV, Lanza G (2016) Resource-based reconfiguration of manufacturing networks using a product-to-plant allocation methodology. In: Proceedings of the 6th CIRP international conference on competitive manufacturing—resource efficiency for global competitiveness pp 511–516Google Scholar
  14. 14.
    Abele E, Liebeck T, Wörn A (2006) Measuring Flexibility in Investment Decisions for Manufacturing Systems. CIRP Ann 55(1):433–436. CrossRefGoogle Scholar
  15. 15.
    Moser E, Stricker N, Liebrecht C et al (2016) Preparation of Papers for IFAC Conferences and symposia: migration planning for global production networks using markovian decision processes. IFAC-Papers online 49(12):35–40.
  16. 16.
    Cooper R-G, Edgett S-J (2014) Portfolio management for new products: picking the winnersGoogle Scholar
  17. 17.
    Wiendahl H-P, Reichardt J, Nyhuis P (2015) Handbook factory planning and design. Springer, HeidelbergCrossRefGoogle Scholar
  18. 18.
    Gausemeier J, Fink A, Schlake O (1998) Scenario Management. Technol Forecast Soc Chang 59(2):111–130. CrossRefGoogle Scholar
  19. 19.
    Wouters M (2012) Cost management: Strategies for business decisions, International ed. McGraw-Hill Higher Education, LondonGoogle Scholar
  20. 20.
    Mardani A, Jusoh A, MD Nor K et al (2015) Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ Res 28(1):516–571. Google Scholar
  21. 21.
    Greco S, Ehrgott M, Figueira JR (eds) (2016) Multiple criteria decision analysis: state of the art surveys. Springer, New YorkzbMATHGoogle Scholar
  22. 22.
    Cisek R (2005) Planung und Bewertung von Rekonfigurationsprozessen in Produktionssystemen. Zugl. In: München, Techn. Univ., Diss., 2005. Forschungsberichte iwb/Institut für Werkzeugmaschinen und Betriebswissenschaften der Technischen Universität München, vol 191. Utz, MünchenGoogle Scholar
  23. 23.
    Chen Y-Y, Fan H-Y (2015) An application of stochastic programming in solving capacity allocation and migration planning problem under uncertainty. Math Probl Eng. Google Scholar
  24. 24.
    Reuter C, Prote J-P, Schmitz T et al (2015) Ermittlung eines strategischen Migrationsplans für globale Produktionsnetzwerke. ZWF 110(7–8):425–428. CrossRefGoogle Scholar
  25. 25.
    Grunow M, Günther HO, Burdenik H et al (2007) Evolving production network structures. CIRP Ann 56(1):427–430. CrossRefGoogle Scholar
  26. 26.
    Hochdörffer J, Laule C, Lanza G (2017–2017) Product variety management using data-mining methods—reducing planning complexity by applying clustering analysis on product portfolios. In: 2017 IEEE International Conference on Industrial Engineering and Management E (IEEM). IEEE, pp 593–597Google Scholar
  27. 27.
    Law AM (2015) Simulation modeling and analysis, 5. edn. McGraw-Hill series in industrial engineering and management science. McGraw-Hill Education, New YorkGoogle Scholar
  28. 28.
    Arndt T, Buderer C, Hofmann M et al (2016) Simulation-based evaluation of quality control strategies in global manufacturing networks. AMR 1140:473–480. CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2019

Authors and Affiliations

  • S. Treber
    • 1
    Email author
  • E. Moser
    • 1
  • S. Helming
    • 1
  • B. Haefner
    • 1
  • G. Lanza
    • 1
  1. 1.wbk-Institute of Production Science, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations