Production Engineering

, Volume 13, Issue 2, pp 211–217 | Cite as

Extent of embossing-related residual stress on the magnetic properties evaluated using neutron grating interferometry and single sheet test

  • Simon VogtEmail author
  • Tobias Neuwirth
  • Benedikt Schauerte
  • Hannes Alois Weiss
  • Peter Markus Falger
  • Alex Gustschin
  • Michael Schulz
  • Kay Hameyer
  • Wolfram Volk
Production Process


Due to the permanently increasing maximum speed of modern electric machines, the mechanical load on the electrical steel rises. The punched flux barriers of reluctance machines play an increasingly key role in the mechanical design. The weakening of the material and the notching effect can cause local failure due to centrifugal force. In this paper, a method is presented which induces residual stresses by embossing electrical steel laminations, which contribute to the guidance of the magnetic flux and cause a negligible mechanical weakening of the sheet. The aim of this paper is to demonstrate the effectiveness of these embossed flux barriers. This is achieved by using neutron grating interferometry, that allows the density of the magnetic domains to be resolved locally. Furthermore the influence of the embossing is mapped globally by single sheet tests. The finite element analysis of the forming process derives the residual stress distribution which is responsible for the measured magnetic behavior. In order to isolate the influence of the residual stress, non-embossed and stress-relief annealed specimens are used as a reference for both measurement methods.


Electrical steel Mechanical stress Forming Embossing Production Electric drives Neutron grating Single sheet tester 



Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—HA 4395/22-1; SCHU 3227/2-1; VO 1487/31-1.


  1. 1.
    Grünzweig C, Frei G, Lehmann E, Kühne G, David C (2007) Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems. Rev Sci Instrum 78(5):053708. CrossRefGoogle Scholar
  2. 2.
    Grünzweig C, David C, Bunk O, Dierolf M, Frei G, Kühne G, Schäfer R, Pofahl S, Rønnow HMR, Pfeiffer F (2008) Bulk magnetic domain structures visualized by neutron dark-field imaging. Appl Phys Lett 93(11):112504. CrossRefGoogle Scholar
  3. 3.
    Hipp A, Willner M, Herzen J, Auweter S, Chabior M, Meiser J, Achterhold K, Mohr J, Pfeiffer F (2014) Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources. Opt Express 22(25):30394–30409. CrossRefGoogle Scholar
  4. 4.
    Lau E (1948) Interference phenomenon on double gratings. Ann Phys 6:417. CrossRefGoogle Scholar
  5. 5.
    Leuning N, Steentjes S, Schulte M, Bleck W, Hameyer K (2016) Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel. J Magn Magn Mater 417:42–48CrossRefGoogle Scholar
  6. 6.
    Leuning N, Steentjes S, Weiss HA, Volk W, Hameyer K (2018) Magnetic material deterioration of non-oriented electrical steels as a result of plastic deformation considering residual stress distribution. IEEE Trans Magn. Google Scholar
  7. 7.
    Naumoski H, Maucher A, Herr U (2015) Investigation of the influence of global stresses and strains on the magnetic properties of electrical steels with varying alloying content and grain size. 5th Int Electric Drives Prod Conf (EDPC). Google Scholar
  8. 8.
    von Pfingsten G, Hameyer K, Paul D (2016) Influence of axial mechanical stress on the magnetic properties of non-oriented electrical steel. In: 2016 6th international electric drives production conference (EDPC), 30 Nov–1 Dec 2016, IEEE, Nuremberg, Germany, pp 193–200.
  9. 9.
    Reimann T (2017) Vortex matter beyond sans. PhD thesis, Technische Universität MünchenGoogle Scholar
  10. 10.
    Saleem A, Alatawneh N, Chromik RR, Lowther DA (2016) Effect of shear cutting on microstructure and magnetic properties of non-oriented electrical steel. IEEE Trans Magn 52(5):1–4CrossRefGoogle Scholar
  11. 11.
    Steentjes S, Rasilo P, Belahcen A, Kouhia R, Hameyer K (2016) Anisotropic model for Villari effect in non-oriented electrical steel sheets. In: Electromagnetic field computation (CEFC), 2016 IEEE conference on, IEEE, pp 1–1Google Scholar
  12. 12.
    Vandenbossche L, Jacobs S, Van Hoecke D, Attrazic E (2015) Impact of mechanical stresses on the magnetic performance of non-oriented electrical steels and its relation to electric machine efficiency. In: Transportation electrification conference and expo (ITEC), 2015 IEEE, IEEE, pp 1–6Google Scholar
  13. 13.
    Weiss H, Leuning N, Steentjes S, Hameyer K, Andorfer T, Jenner S, Volk W (2017) Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. J Magn Magn Mater 421:250–259CrossRefGoogle Scholar
  14. 14.
    Weiss H, Steentjes S, Tröber P, Leuning N, Neuwirth T, Schulz M, Hameyer K, Golle R, Volk W (2018) Neutron grating interferometry investigation of punching-related local magnetic property deteriorations in electrical steels. J Magn Magn Mater. Google Scholar
  15. 15.
    Weiss H, Tröber P, Golle R, Steentjes S, Leuning N, Elfgen S, Hameyer K, Volk W (2018) Impact of punching parameter variations on magnetic properties of non-grain oriented electrical steel. IEEE Trans Ind Appl. Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Chair of Metal Forming and CastingTechnical University of MunichGarchingGermany
  2. 2.Heinz Maier-Leibnitz Zentrum (MLZ)Technical University of MunichGarchingGermany
  3. 3.Institute of Electrical MachinesRWTH Aachen UniversityAachenGermany
  4. 4.Department of Physics and Munich School of Bioengineering, Chair of Biomediacal PhysicsTechnical University of MunichGarchingGermany

Personalised recommendations