Production Engineering

, Volume 13, Issue 2, pp 133–138 | Cite as

Method for highly spatially resolved determination of residual stress by using nanoindentation

  • Simon VogtEmail author
  • Thomas Greß
  • Franz Ferdinand Neumayer
  • Norbert Schwarzer
  • Adrian Harris
  • Wolfram Volk
Production Process


Measurement of highly spatially resolved residual stresses is a crucial task for tailoring the stress state during manufacturing to improve mechanical performance of metallic objects. Especially in sheet metal forming or blanking with sheet thicknesses down to 0.1 mm, a highly resolved pattern of the stress distribution over the sheet thickness is required for optimisation. For this purpose, a method which uses an extended Hertzian theory for calculating residual stresses from the results of nanoindentation is used to measure the stress profile in metallic cylinders. For verification of the indentation results, hole drilling is utilised to determine residual stresses in the near-surface area. This method provides similar assumptions about the stress state (biaxial). The measuring principle is also based on correlations between mechanical behaviour of the material and the residual stress distribution. The results yield a good accordance of the measured values despite the different scales of measurement. Therefore, a highly spatially resolved measurement of residual stresses with nanoindentation is possible and shows comparable values to the classic hole drilling technique.


Nanoindentation Hole drilling method Residual stress Production engineering Stress measurement Strain measurement 







Applied load










Orientation angle


Measuring grid index








Von Mises


Coordinate direction


  1. 1.
    ASTM E837-08 (2008) Standard test method for determining residual stresses by the hole-drilling strain-gage method.
  2. 2.
    DIN EN 15305 (2009) Zerstörungsfreie Prüfung – Röntgendiffraktometrisches Prüfverfahren zur Ermittlung der EigenspannungenGoogle Scholar
  3. 3.
    Keil S (1992) Experimental determination of residual stresses with the ring-core method and an on-line measuring system. Exp Tech 16:17–24. CrossRefGoogle Scholar
  4. 4.
    Lasmis JL (2002) Prestress Engineering of structural material: a global design approach to the residual stress problem. In: Totten G, Howes M, Inoue T (eds) Handbook of residual stress and deformation of steel, ASM International, pp 11–26Google Scholar
  5. 5.
    Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):15641583. CrossRefGoogle Scholar
  6. 6.
    Renzelli M, Mughal MZ, Sebastiani M, Bemporad E (2016) Design, fabrication and characterization of multilayer cr-crn thin coatings with tailored residual stress profiles. Mater Des 112:162–171. CrossRefGoogle Scholar
  7. 7.
    Rossini NS, Dassisti M, Benyounis KY, Olabi AG (2011) Methods of measuring residual stresses in components. Mater Des 35:572–588. CrossRefGoogle Scholar
  8. 8.
    Santana Y, La Barbera-Sosa J, Staia M, Lesage J, Puchi-Cabrera E, Chicot D, Bemporad E (2006) Measurement of residual stress in thermal spray coatings by the incremental hole drilling method. Surface Coat Technol 201:2092–2098. CrossRefGoogle Scholar
  9. 9.
    Schajer G, Whitehead P (2013) Hole drilling and ring coring. In: Schajer G (ed) Practical residual stress measurement methods, chap 2. Wiley, New York, pp 29–64. CrossRefGoogle Scholar
  10. 10.
    Schwarz T (1996) Beitrag zur eigenspannungsermittlung an isotropen, anisotropen sowie inhomogenen, schichtweise aufgebauten werkstoffen mittels bohrlochmethode und ringkernverfahren. PhD thesis, Materials Testing Institute University of StuttgartGoogle Scholar
  11. 11.
    Schwarzer N (2005) Analysing nanoindentation unloading curves using pharr’s concept of the effective indenter shape. Thin Solid Films, ICMCTF 494(1):168–172. Google Scholar
  12. 12.
    Schwarzer N (2006b) The extended hertzian theory and its uses in analyzing indentation experiments. Philos Mag 86(33–35):5179–5197. CrossRefGoogle Scholar
  13. 13.
    Schwarzer N (2017) Scale invariant mechanical surface optimization. Wiley-Blackwell, chap 22:513–560.
  14. 14.
    Schwarzer N, Pharr G (2004) On the evaluation of stresses during nanoindentation with sharp indenters. Thin Solid Films, Proceedings of the 31st International Conference on Metallurgical Coatings and Thin Films 469–470:194–200.
  15. 15.
    Schwarzer N, Chudoba T, Pharr G (2006a) On the evaluation of stresses in coated materials during nanoindentation with sharp indenters. Surface Coat Technol 200(14):4220–4226. CrossRefGoogle Scholar
  16. 16.
    Schwarzer N, Chudoba T, Richter F (2006b) Investigation of ultra thin coatings using nanoindentation. Surface Coat Technol 200(18):5566–5580. CrossRefGoogle Scholar
  17. 17.
    Sebastiani M, Bemporad E, Carassiti FNS (2011) Residual stress measurement at the micrometer scale: focused ion beam (fib) milling and nanoindentation testing. Philos Mag 91(7–9):1121–1136. CrossRefGoogle Scholar
  18. 18.
    Tietz HD, Blumenauer H, Hoffmann H (1977) Eigenspannungen in Werkstoffen. Nr. 6/N, Sitzungsberichte der Akademie der Wissenschaften der DDR, Akademie-Verlag, BerlinGoogle Scholar
  19. 19.
    Wolfstieg U, Macherauch E (1973) Ursachen und Bewertung von Eigenspannungen. Chemie Ingenieur Technik 45(11):760–770. CrossRefGoogle Scholar
  20. 20.
    Zhu LN, Xu BS, Wang HD, Wang CB (2015) Measurement of residual stresses using nanoindentation method. Crit Rev Solid State Mater Sci 40(2):77–89. CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  1. 1.Technical University of Munich, Chair of Metal Forming and CastingGarchingGermany
  2. 2.Saxonian Institute of Surface Mechanics SIOUmmanz/RügenGermany
  3. 3.Micro Materials Limited, Willow House Yale Business Village Ellice WayWrexhamUK

Personalised recommendations