Advertisement

Production Engineering

, Volume 12, Issue 3–4, pp 535–546 | Cite as

In situ analysis of PCBN cutting tool materials during thermo-mechanical loading using synchrotron radiation

  • F. Proes
  • C. Eichenseer
  • W. Hintze
  • N. Schell
  • W. Leahy
  • R. M’Saoubi
  • S. Sattel
Tooling
  • 69 Downloads

Abstract

Polycrystalline cubic boron nitride (PCBN) has outstanding properties in terms of hardness and chemical stability at elevated temperatures. Therefore, PCBN is used in cutting tool materials for hard machining applications e.g. hard turning of hardened steels. Due to the hardness of the workpiece, high forces act on a low contact area between tool and workpiece. Hence, severe thermo-mechanical loadings occur in such applications causing enhanced tool wear. Fundamental knowledge about the material behavior of PCBN-cutting-materials under thermo-mechanical loading is valuable as a basis for a better understanding of tool wear and finally for improvement of tool wear behavior. PCBN-materials are polycrystalline multi-phase compounds with strongly deviating material properties. In order to investigate the phase selective thermo-mechanical behavior of such materials lattice strain measurements are conducted under thermo-mechanical load using in situ X-ray diffraction with high energy synchrotron radiation. A four point bending test set-up and ceramic thermal heaters are used for the application of thermo-mechanical loading. Three different materials are investigated: a solid low PCBN-content material, a low PCBN-content material on a cemented carbide (CC) substrate and a high PCBN-content material on a CC-substrate. The low PCBN-content material exhibits a single phase binder material whereas the high PCBN-content material exhibits a multi-phase binder with up to five phases. Residual stresses are found in the samples with CC-substrate, only. Different phases of one material show different strains but nearly same stresses upon loading. Thus, thermo-mechanical loading can be seen as superposition of the respective mechanical and thermal loads. The space-resolved experimental data is used to validate an analytical model for the calculation of macroscopic stresses. The phase selective space-resolved strain and stress analysis presented in this paper provides a valuable method for the investigation and optimization of hard cutting tool materials and coatings under real cutting conditions.

Keywords

PCBN Cubic boron nitride In situ measurement Synchrotron radiation Cutting tool Stress–strain measurement 

References

  1. 1.
    Kratz H (2006) Belastungsoptimierte werkzeuge in wichtigen anwendungsgebieten der CBN schneidstoffe. Ind Diamanten Rundschau 3:62–67Google Scholar
  2. 2.
    Eichenseer C, Wittmann I, Hartig C, Schneider GA, Schell N, Hintze W (2013) In situ measurement of lattice strains in mixed ceramic cutting tools under thermal and mechanical loads using synchrotron radiation. Prod Eng Res Devel 7:283–289CrossRefGoogle Scholar
  3. 3.
    Eichenseer C, Hartig C, Schell N, Hintze W (2014) In situ determination of internal stresses in mixed ceramic cutting tools during friction testing using synchrotron radiation. Prod Eng Res Devel 8:513–519CrossRefGoogle Scholar
  4. 4.
    Cheng W, Finnie I (2007) Residual stress measurement and slitting method. Springer, New YorkGoogle Scholar
  5. 5.
    Lugner P (2014) Modern X-ray analysis on single crystals. De Gruyter, BerlinCrossRefGoogle Scholar
  6. 6.
    Riedel R (2000) Handbook of ceramic hard materials. Wiley, WeinheimCrossRefGoogle Scholar
  7. 7.
    Manns T (2010) Analyse oberflächennaher Eigenspannungszustände mittels komplementärer Beugungsverfahren. Dissertation, Universität KasselGoogle Scholar
  8. 8.
    Element Six (2017) Giving toolmakers a competitive edge. http://www.e6.com/en/Home/Materials+and+products/PCBN/(16.04.2017 21:11 h)
  9. 9.
    Schell N, Martins RV, Beckmann F, Ruhnau H-U, Kiehn R, Schreyer A (2008) The high energy material science beamline at PETRA III. Mat Sci Forum 571–572:261–266CrossRefGoogle Scholar
  10. 10.
    He BB (2009) Two-dimensional X-ray diffraction. Wiley, HobokenCrossRefGoogle Scholar
  11. 11.
    Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Cryst 43:1126–1128CrossRefGoogle Scholar
  12. 12.
    Sadd MH (2009) Elasticity. Bibliogr. Elsevier, BurlingtonGoogle Scholar
  13. 13.
    Schedler W (1988) Hartmetall für den Praktiker. VDI-Verlag, DüsseldorfGoogle Scholar
  14. 14.
    Ghavami P (2015) Mechanics of materials. Springer, ChamCrossRefGoogle Scholar
  15. 15.
    Chuang TJ, Lee S (2000) Elastic flexure of bilayered beams subject to strain differentials. J Mater Res 12:2780–2788CrossRefGoogle Scholar
  16. 16.
    Riedel R (2000) Handbook of ceramic hard materials. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  17. 17.
    Macherauch E (1983) Eigenspannungen: entstehung-bewertung-messung. Deutsche Gesellschaft für Metallkunde, OberurselGoogle Scholar
  18. 18.
    Tönshoff HK (2013) Basics of cutting and abrasive processes. Springer, BerlinCrossRefGoogle Scholar
  19. 19.
    Sell K (2005) Neue Schichtkonzepte zur Abscheidung von kubischem Bornitrid. Dissertation, Universität KarlsruheGoogle Scholar
  20. 20.
    Pierson HO (1996) Handbook of refractory carbides and nitrides. Noyes Publ, WestwoodGoogle Scholar
  21. 21.
    Michalowsky L (1994) Neue keramische Werkstoffe. Dt. Verl. für Grundstoffindustrie, LeipzigCrossRefGoogle Scholar
  22. 22.
    Munz D, Fett T (2001) Ceramics. Springer, BerlinGoogle Scholar
  23. 23.
    Hubbell JH, Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 meV for elements z = 1 to 92 and 48 additional substances of dosimetric interest. National Inst. of Standards and TechnologyGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2018

Authors and Affiliations

  • F. Proes
    • 1
  • C. Eichenseer
    • 1
  • W. Hintze
    • 1
  • N. Schell
    • 2
  • W. Leahy
    • 3
  • R. M’Saoubi
    • 4
  • S. Sattel
    • 5
  1. 1.Hamburg University of Technology, Institute of Production Management and TechnologyHamburgGermany
  2. 2.Helmholtz-Zentrum Geesthacht, Center for Materials- and Coastal Research, Institute of Materials ResearchGeesthachtGermany
  3. 3.Element Six S.A., Harwell CampusDidcotUK
  4. 4.SECO TOOLS ABFagerstaSweden
  5. 5.Gühring KGAlbstadtGermany

Personalised recommendations