Advertisement

Production Engineering

, Volume 12, Issue 1, pp 25–33 | Cite as

Deburring of cross-drilled holes with ball-end cutters—modeling the tool path

  • E. Abele
  • K. Schützer
  • S. Güth
  • A. MeinhardEmail author
Production Process

Abstract

Machining of cross-drilled holes generates burrs on the entrance and exit. Deburring of these intersecting holes is challenging due to the limited accessibility. This paper presents a model that creates a tool path suitable for precision deburring of intersecting holes with a ball-end cutter. The presented model is developed with the help of Computer-Aided-Engineering. The tool generates a three-axis travel path related to the intersection geometry of the main and cross hole. The burr is removed and a constant chamfer is machined. The intersection curve is even machined through the main or cross bore. The presented model is verified by means of experiments with three different intersection samples using the material AlSi7Mg.

Keywords

Production process Deburring Tool path 

Notes

Acknowledgements

This research and development project is funded by the German Research Foundation (DFG AB 133/94-1). The authors are responsible for the content of this publication. The authors are also grateful to the anonymous reviewers for their constructive criticism which served to improve this paper.

References

  1. 1.
    Da Silva LC, Mota PR, Da Silva MB, Ezugwu EO, Machado AR (2015) Study of burr height in face milling of PH 13-8 Mo stainless steel—transition from primary to secondary burr and benefits of deburring between passes. CIRP J Manufact Sci Technol 10:61–67CrossRefGoogle Scholar
  2. 2.
    Gillespie LK (1976) Burrs Produced by End Milling, Bendix, Kansas City Division Report BDX-613–1503Google Scholar
  3. 3.
    Beier H-M, Nothnagel R (2015) Praxisbuch Entgrattechnik—Wegweiser zur Gratminimierung und Gratbeseitigung für Konstruktion und Fertigung, 2nd edn. Hanser, MünchenCrossRefGoogle Scholar
  4. 4.
    Gillespie LK (2001) Your burr technology efforts changed the World. Deburring Technology International, Kansas CityGoogle Scholar
  5. 5.
    Pischan M (2013) Deburrring of cross holes in titanium using industrial robots, WGP Congress. Adv Mater Res 769:147–154CrossRefGoogle Scholar
  6. 6.
    Beier H-M: Hochgeschwindigkeitsentgraten, wt Werkstattstechnik online, 95 H.10: 821–8272005Google Scholar
  7. 7.
    Lee UL, Ko SL (2008) Development of deburring tool for burrs at intersecting holes. J Mater Process Technol 201:454–459CrossRefGoogle Scholar
  8. 8.
    Güth S, Abele E (2013) Automatisiertes Entgraten von Kreuzbohrungen—Werkzeugbenchmark, Werkstatt—Betrieb, WB10/2013, pp 74–78Google Scholar
  9. 9.
    Ton TP, Park HY, Ko SL (2011) Experimental analysis of deburring process on inclined exit surfaces by New Deburring Tool. CIRP Ann Manuf Technol 60:129–132CrossRefGoogle Scholar
  10. 10.
    Kim KH, Park NJ (2005) A New Deburring Tool for Intersecting Holes. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol 219, pp 865–870Google Scholar
  11. 11.
    Cho C-H, Kim K-H (2010) Product development with TRIZ: design evolution of deurring tools for intersecting holes. J Mech Sci Technol 24:169–173CrossRefGoogle Scholar
  12. 12.
    Cho C-H, Chae S-W, Kim K-H (2014) Search for a new design of deburring tools for intersecting holes with TRIZ. Int J Manuf Technol 70:2221–2231CrossRefGoogle Scholar
  13. 13.
    Schützer K, Abele E, Güth S (2015) Simulation-based deburring tool and process development. CIRP Ann Manuf Technol 64:357–360CrossRefGoogle Scholar
  14. 14.
    Güth S (2016) Simulationsbasierte Entgratwerkzeug-entwicklung für Kreuzbohrungen, Schriftenreihe des PTW: “Innovation Fertigungstechnik”. Shaker Verlag, TU Darmstadt, AachenGoogle Scholar
  15. 15.
    Kim YJ, Ko SL, Kim JH, Kim BK (2006) Development of intelligent system to minimize burr formation in face milling. Int J Manuf Technol 29:879–884CrossRefGoogle Scholar
  16. 16.
    Chu C-H, Chen J-T (2005) Geometric approaches to enhancing edge quality in planar milling. Int J Prod Res 43(4):773–791CrossRefGoogle Scholar
  17. 17.
    Song H-C, Song J-B (2013) Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching. Int J Precision Manuf 15(1): 85–91MathSciNetCrossRefGoogle Scholar
  18. 18.
    Posada JRD, Kumar S, Kuss A, Schneider U, Drust M, Dietz T, Verl A (2016) Automatic Programming and Control for Robotic Deburring, 47th International Symposium on Robotics. MunichGoogle Scholar
  19. 19.
    Avila MC (2004) Deburring of Cross-drilled hole intersections by mechanized cutting, Laboratory for Manufacturing Automation. Annual Reports, pp 10–20Google Scholar
  20. 20.
    Pischan M (2014) Entgraten von Kreuzbohrungen mit Industrierobotern, Schriftenreihe des PTW: “Innovation Fertigungstechnik”. Shaker Verlag, TU Darmstadt, AachenGoogle Scholar
  21. 21.
    Sato T, Sato Y, Maekawa T (2016) Tool path generation for Chamfering Drill holes of a pipe with constant width. Comput Aided Des 78:26–35CrossRefGoogle Scholar
  22. 22.
    Chern G-L, Dornfeld DA (1996) Burr/breakout model development and experimental verification. J Eng Technol 118:201–206Google Scholar
  23. 23.
    Hashimura M, Ueda K, Dornfeld DA (1995) Analysis of three-dimensional Burr formation in oblique cutting. Ann CIRP 44:27–30CrossRefGoogle Scholar
  24. 24.
    Kühnel W (2013) Differentialgeometrie Kurven—Flächen—Mannigfaltigkeiten, Edition 6. Springer Spektrum, WiesbadenCrossRefzbMATHGoogle Scholar
  25. 25.
    ISO 13715:2000 (2000) Technical drawings – Edges of undefined shape—Vocabulary and indications, Technical Committee: ISO/ TC 10/SC 6, Mechanical engineering documentationGoogle Scholar
  26. 26.
    Wojciechowski S, Chwalczuk T, Twardowski P, Krolczyk GM (2015) Modeling of cutter displacements during ball end milling of inclined surfaces. Archieves Civil Mech Eng 15:798–805CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2017

Authors and Affiliations

  1. 1.Institute of Production Management, Technology and Machine ToolsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Laboratory for Computer Integrated Design and ManufacturingUniversidade Metodista de PiracicabaPiracicabaBrazil

Personalised recommendations