Production Engineering

, Volume 11, Issue 4–5, pp 419–424 | Cite as

New tool concept for grinding a plateau-like surface for tribological applications

  • B. Denkena
  • T. Grove
  • O. Maiss
  • V. Suntharakumaran
Production Process

Abstract

One of the most important factors for energy efficiency is the reduction of friction in machine elements. The grinding process is often the final machining process in machining hardened steel parts and the resulting surface finish influences the tribological behavior. The combination of grinding with a honing process can generate a plateau-like surface to reduce friction and create an oil reservoir to decrease abrasive wear and improve the fluid film stability. Additional processes like laser machining, micro milling or etching are able to generate micro dimples to improve the reduction of friction. Today, grinding processes are limited to machine plateau-like surfaces. Within this paper, a new tool concept will be presented, composed of a grinding tool with two different grain sizes and a metallic bonding. The use of small abrasive grains generates a smooth surface with low roughness values. A few additional larger grains induce stochastic scratches and create the plateau-like surface. Grinding experiments are conducted to analyze the effect of feed rate, feed angle and ratio between small and large grains on the resulting surface.

Keywords

Grinding Roughness Tribology 

References

  1. 1.
    Gless M (2010) Waelzkontaktermuedung bei Mischreibung. Dr.-Ing. Dissertation, Otto-von-Guericke-Universitaet MagdeburgGoogle Scholar
  2. 2.
    Tomanik E (2008) Friction and wear bench tests of different engine liner surface finishes. Tribol Int 41(11):102–108CrossRefGoogle Scholar
  3. 3.
    Grabon W, Koszela W, Pawlus P, Achwat S (2013) Improving tribological behaviour of piston ring–cylinder liner frictional pair by liner surface texturing. Tribol Int 61:102–108CrossRefGoogle Scholar
  4. 4.
    Denkena B, de Leon L, van der Meer M, Turger A (2009) Flexible polishing with bounded grains for complex ceramic endoprostheses. In: Proceedings of the 24th ASPE annual meeting, USAGoogle Scholar
  5. 5.
    Malberg MC, Whitehouse DJ (1993) Characterization of surface texture generated by plateau honing process. Ann CIRP 42(1):637–639CrossRefGoogle Scholar
  6. 6.
    Kaestner J (2013) Methode zur spanenden Herstellung reibungsoptimierender Mikroschmiertaschen. Dr.-Ing. Dissertation, Leibniz Universitaet HannoverGoogle Scholar
  7. 7.
    Wakuda M, Yamauchi Y, Kanzaki S, Yasuda Y (2003) Effect of surface texturing on friction reduction between ceramic and steel materials und lubricated sliding contact. Wear 254:356–363CrossRefGoogle Scholar
  8. 8.
    Denkena B, Köhler J, Kästner J, Göttsching T, Dinkelacker F, Ulmer H (2013) Efficient machining of microdimples for friction reduction. J Micro Nano Manuf 1(1):011003–011008-8. doi:10.1115/1.4023757 CrossRefGoogle Scholar
  9. 9.
    Flores F (2010) Innovative Honverfahren. Motorenbau. VDI Z. Springer 152:28–31Google Scholar
  10. 10.
    Denkena B, Grove T, Bremer I, Behrens L (2016) Design of bronze-bonded grinding wheel properties. CIRP Ann Manuf Technol 65(1):333–336CrossRefGoogle Scholar
  11. 11.
    Hecker RL, Liang SY (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tools Manuf 43(8):755–761CrossRefGoogle Scholar
  12. 12.
    Aurich JC, Biermann D, Blum H, Brecher C, Carstensen C, Denkena B, Klocke F, Kroeger M, Steinmann P, Weinert K (2009) Modelling and simulation of process: machine interaction in grinding. Prod Eng Res Dev 3:111–120CrossRefGoogle Scholar
  13. 13.
    Toenshoff HK, Peters J, Inasaki T, Paul T (1992) Modelling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688CrossRefGoogle Scholar
  14. 14.
    Behrens L (2016) Schleifen von PCBN. Dr.-Ing. Disseration, Leibniz Universitaet HannoverGoogle Scholar
  15. 15.
    Kannappan S, Malkin S (1972) Effects of gran size and operating parameters on the mechanics of grinding. J Eng Ind 8:833–842CrossRefGoogle Scholar
  16. 16.
    Denkena B, Koehler J, Kaestner J (2012) Chip formation in grinding: an experimental study. Prod Eng Res Dev 6:107–115CrossRefGoogle Scholar
  17. 17.
    Lierse T (1998) Mechanische und thermische Wirkung beim Schleifen keramischer Werkstoffe. Dr.-Ing. Dissertation, Universitaet HannoverGoogle Scholar
  18. 18.
    Uhlmann E, Klein TB, Hochschild L, Baecker C (2011) Influence of structuring by abrasive machining on the tribological properties of workpiece surfaces. Procedia Eng 19:363–370CrossRefGoogle Scholar
  19. 19.
    Uhlmann E, Baecker C, Schroeder N (2013) Surface structuring using kinematic modulation in grinding. Prod Eng Res Dev 7:373–381CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2017

Authors and Affiliations

  1. 1.Institute of Production Engineering and Machine ToolsLeibniz Universitaet HannoverHannoverGermany

Personalised recommendations