Production Engineering

, Volume 11, Issue 4–5, pp 613–619 | Cite as

Performance of a piezo-hydraulic fine positioning device: Experimental analyses with a scaled model

Machine Tool

Abstract

Automated fine positioning for machining of heavyweight components, such as gears for marine, mining or power engineering, offers significant potential for reducing setup process time. Therefore, a fine positioning system based on a novel compact piezo hydraulic pump has been developed. The system allows precision positioning of large components in 4 degrees of freedom (DOF). The presented design is able to compensate eccentric errors of ±2.5 mm, tumbling errors of ±0.1° of work pieces with a weight up to 4.7 t. A flexible circular membrane is used as a flexure bearing for the tumbling unit. The linear axes are crossed one above the other. Based on the original model, a scaled (1:31) tumbling unit was designed and realized for experimental analyses. The scaled prototype was analyzed regarding its stiffness and accuracy. Both values have been evaluated to be sufficiently high. A positioning accuracy of 4.5 µrad is expected for the original size model.

Keywords

Piezoelectric Fine positioning Hydraulics Large components 

References

  1. 1.
    Lünemann M (2006) Eigenschaftsermittlung von Konstruktionselementen in Werkstückspann-systemen. Dr.-Ing. Dissertation, Leibniz Universität Hannover, Hannover (ISBN: 3-939026-18-2)Google Scholar
  2. 2.
    Denkena B, Immel J, Gümmer O (2010) Mechatronic Chuck with 4 degrees of freedom precision positioning. In: Proceedings of the 10th Euspen ConferenceGoogle Scholar
  3. 3.
    Spath D, Mussa S (2001) Compensation of machine tool errors with a piezo device. Production engineering VIII/2:103–106 (ISBN: 3-9805589-9-1)Google Scholar
  4. 4.
    Yang C, Wang GL, Yang BS, Wang HR (2008) Research on the structure of high-speed large-scale ultra-precision positioning system. In: Proceedings of the 3rd IEEE International Conference, Sanya, pp 9–12Google Scholar
  5. 5.
    Jungnickel U, Eicher D, Schlaak H F (2002) Miniaturised micro-positioning system for large displacements and large forces based on an inchworm platform. In: Actuator 2002, 8th International Conference on New Actuators, pp 684–687Google Scholar
  6. 6.
    Abele E, Hanselka H, Haase F, Schiffler A, Schlote D (2008) Development and design of an active work piece holder driven by piezo actuators. Production engineering: research and development, pp 437–442 (ISSN 0944–6524)Google Scholar
  7. 7.
    Campatelli G, Sallese L, Scippa A (2015) Design of an active workpiece holder. Procedia CIRP 34: 217–222CrossRefGoogle Scholar
  8. 8.
    Sze-Wei G, Han-Seok L, Rahman M, Watt F (2007) A fine tool servo system for global position error compensation for a miniature ultra-precision lathe. Int J Mach Tools Manuf 47(7–8):1302–1310CrossRefGoogle Scholar
  9. 9.
    Cai K, Tian Y, Wang F, Zhang, Dawei, Liu, Xianping, Shirinzadeh, Bijan (2017) Design and control of a 6-degree-of-freedom precision positioning system. Robot Comput Integr Manuf 44:S.77–96CrossRefGoogle Scholar
  10. 10.
    Li Y, Liu C, Hao X, Gao JX, Maropoulos PG (2015) Responsive fixture design using dynamic product inspection and monitoring technologies for the precision machining of large-scale aerospace parts. CIRP Ann Manuf Technol 64:173–176CrossRefGoogle Scholar
  11. 11.
    Olaiz E, Zulaika J, Veiga F, Puerto M, Gorrotxategi A (2014) Adaptive fixturing system for the smart and flexible positioning of large volume workpieces in the wind-power sector. Procedia CIRP 21:183–188CrossRefGoogle Scholar
  12. 12.
    Keiser R (2007) Kompensation von statischen und dynamischen Verlagerungen im Fräsprozess. Dr.-Ing. Dissertation, Universität Aachen, Shaker Verlag, Herzogenrath (ISBN: 978–3832263850)Google Scholar
  13. 13.
    Bauer J, Mack D, Fleischer J (2014) Highly integrated high precision fluidic feed axis. Procedia CIRP 14:339–344CrossRefGoogle Scholar
  14. 14.
    Denkena B, Plümer S (2012) Analysis of a piezo-hydraulically actuated fixing plate for highly precise positioning. In: The 13th Mechatronics Forum International Conference, Proceedings, Vol. 2, pp 575–581 (ISBN: 978–3990330456)Google Scholar
  15. 15.
    Denkena B, Hülsemeyer L (2015) Piezohy-draulische Feinpositionierung von Großbauteilen. ZWF 110–10:616–619CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2017

Authors and Affiliations

  1. 1.Institute of Production Engineering and Machine ToolsLeibniz Universität HannoverGarbsenGermany

Personalised recommendations