Advertisement

Production Engineering

, Volume 11, Issue 3, pp 285–294 | Cite as

Modeling of process forces with respect to technology parameters and tool wear in milling Ti6Al4V

  • E. Abele
  • C. HasenfratzEmail author
  • M. Bücker
Production Process
  • 325 Downloads

Abstract

The usage and importance of titanium materials is increasing worldwide. Titanium is particularly suitable for use in turbines and lightweight construction due to its high heat resistance and low density. However, its low thermal conductivity results in machining problems and short tool life due to the associated high mechanical and thermal tool loads. Knowledge about the mechanical tool load during the milling process is of vital importance to process design and modeling. This paper presents multivariate regression method to model the process forces involved in the titanium milling process with respect to various technology parameters. In particular, the resulting tool wear and its relationships with these process forces is analyzed.

Keywords

Milling Process forces modeling Ti6Al4V Tool wear 

List of symbols

A

Cross section of undeformed chip (mm²)

ae

Width of cut (mm)

ap

Depth of cut (mm)

Fc

Cutting force (N)

FcN

Normal cutting force (N)

Fx

Force in x-direction (N)

Fy

Force in y-direction (N)

fz

Feed per tooth (mm)

h

Undeformed chip thickness (mm)

K

Intercept

Kae

Regression coefficient

Kap

Regression coefficient

Kfz

Regression coefficient

Kvc

Regression coefficient

KVB

Regression coefficient

KA

Regression coefficient

V

Material removal (cm3)

VB

Width of flank wear land VB (µm)

vc

Cutting speed (m/min)

φ

Entry angle (°)

Notes

Acknowledgements

This research and development project is funded by the German Federal Ministry of Education and Research (BMBF) within the 02PN2205 and managed by the Project Management Agency Karlsruhe (PTKA). The authors are responsible for the contents of this publication. The authors are also grateful to the anonymous reviewers for their constructive criticisms which served to improve the paper.

References

  1. 1.
    Hanapia S, Tijania AS, Abdol Rahima AH, Wan Mohamed WAN (2015) Comparison of A prototype PEM fuel cell powertrain power demand and hydrogen consumption based on inertia dynamometer and on-road tests, 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies, Shah Alam, 2015Google Scholar
  2. 2.
    Pratap T, Patra K, Dyakonov AA (2015) Modeling cutting force in micro-milling of Ti-6Al-4V titanium alloy. Procedia Eng 129:134–139CrossRefGoogle Scholar
  3. 3.
    Kappmeyer G, Hubig C, Hardy M, Witty M, Busch M (2012) Modern machining of advanced aerospace alloys —enabler for quality and performance. Procedia CIRP 1:28–43CrossRefGoogle Scholar
  4. 4.
    López de Lacalle LN, Pérez J, Llorente JI, Sánchez JA (2012) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100:1–11CrossRefGoogle Scholar
  5. 5.
    Hasenfratz C, Abele E (2016) Analysis of the tool deflection in end milling of titanium, Proceedings of the ASME 2016 International Mechanical Engineering Congress ans Exposition, pp 1–13Google Scholar
  6. 6.
    M’Saoubi R, Axinte D, Soo LS, Nobel C, Attia H, Kappmeyer G, Engin S, Sim WM (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann Manuf Technol 64(2):557–580CrossRefGoogle Scholar
  7. 7.
    Ali MH, Khidhir BA, Ansari MNM, Mohamed B (2013) FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy. HBRC J 9:263–269CrossRefGoogle Scholar
  8. 8.
    Diana AC, Sorin MC (2013) Prediction of Cutting Forces at 2D Titanium Machining. Prodecia Eng 69:81–89Google Scholar
  9. 9.
    Martellotti ME (1941) An analysis of the milling process. Trans ASME 63:677Google Scholar
  10. 10.
    Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  11. 11.
    Sun S, Brandt M, Dargusch M (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568CrossRefGoogle Scholar
  12. 12.
    Rashid R, Sun S, Wang G, Dargusch M (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69CrossRefGoogle Scholar
  13. 13.
    Germain D, Fromentin G, Poulachon G, Bissey-Breton S (2013) From large-scale to micromachining: a review of force prediction models. J Manuf Processes 15:389–401CrossRefGoogle Scholar
  14. 14.
    Adetoro MB, Wen HP (2008) FEM evaluation of mechanistic cutting force coefficients using ALE Formation, Abaqus Users’ Conference, 2008Google Scholar
  15. 15.
    Taylor FW (1907) On the art of cutting metal. American society of mechanical engineers, New YorkGoogle Scholar
  16. 16.
    Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. In: Zeitschrift des Vereins deutscher Ingenieure, pp 657–662Google Scholar
  17. 17.
    Kronenberg M (1954) Grundzüge der Zerspanungslehre; 1. Band: einschneidige Zerspanung. Springer, Berling, Göttingen, HeidelbergCrossRefGoogle Scholar
  18. 18.
    Kalveram M (2005) Analyse und vorhersage der prozessdynamik und prozessstabilität beim Hochgeschwindigkeitsfräsen, PH.D. thesis, University Dortmund, Dortmund, 2005Google Scholar
  19. 19.
    Faassen R (2003) Prediction of regenerative chatter by modeling and analysis of high speed milling, Eindhoven, 2003Google Scholar
  20. 20.
    Sabberwal AJP (1962) Cutting forces in down milling. Int J Mach Tool Design Res 2:27–41CrossRefGoogle Scholar
  21. 21.
    Fu HJ, Devor RE, Kapoor SG (1984) A mechanistic model for the prediction of the force system in face milling operations. J Manuf Sci Eng 106(1):81–88Google Scholar
  22. 22.
    Spiewak S (1995) An improved model of the chip thickness in milling. Ann CIRP 44(1):39–42CrossRefGoogle Scholar
  23. 23.
    Wang H, Quin X, Ren C, Wang Q (2012) Prediction of cutting forces in helical milling process. Int J Adv Manuf Technol 58:849–859CrossRefGoogle Scholar
  24. 24.
    Rott O, Hömberg D, Mense C (2006) A Comparison of analytical cutting force models. Forschungsverbund, BerlinGoogle Scholar
  25. 25.
    Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tools Manuf 54–55:34–45CrossRefGoogle Scholar
  26. 26.
    Ehmann KF, Kapoor SG, Devor RE, Lazoglu I (1997) Machining process modeling: a review. Trans ASME J Manuf Sci Eng 119(4B):655–663CrossRefGoogle Scholar
  27. 27.
    Lv D, Xu J, Ding W, Fu Y, Yang C, Su H (2016) Tool wear in milling Ti40 burn-resistant titanium alloy using pneumatic mist jet impinging cooling. J Mater Process Technol 229:641–650CrossRefGoogle Scholar
  28. 28.
    Klocke F, Settineri L, Lung D, Priarone PC, Arft M (2013) High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity, Aachen, 2013Google Scholar
  29. 29.
    Nouari M., Iordanoff I (2007) Effect of the third-body particles on the tool–chip contact and tool-wear behaviour during dry cutting of aeronautical titanium alloys. Tribol Int 40:1351–1359CrossRefGoogle Scholar
  30. 30.
    Oraby SE, Hayhurst DR (1991) Development of models for tool wear force relationships in metal cutting. Int J Mech Sci 33(2):125–138CrossRefGoogle Scholar
  31. 31.
    Teitenberg TM, Bayoumi AE, Yucesan G (1992) Tool wear modeling through an analytic mechanistic model of milling processes. Wear 154(2):287–304CrossRefGoogle Scholar
  32. 32.
    Lin SC, Yang RJ (1995) Force-based model for tool wear monitoring in face milling. Int J Mach Tools Manuf 35(9):1201–1211CrossRefGoogle Scholar
  33. 33.
    Lin SC, Lin RJ (1996) Tool wear monitoring in face milling using force signals. Wear 198:136–142CrossRefGoogle Scholar
  34. 34.
    Cui Y, Fussell BK, Jerard RB, Esterling DM (2009) Tool wear monitoring for milling by tracking cutting force model coefficients. Trans (NAMRI/SME) 37:S613–620Google Scholar
  35. 35.
    Kolar P, Sulitka M, Fojtu P, Falta J, Sindler J (2016) Cutting force modeling with a combined influence of tool wear and tool geometry. Manuf Technol 16(3):524–531Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2017

Authors and Affiliations

  1. 1.Institute of Production Management, Technology and Machine ToolsDarmstadtGermany

Personalised recommendations