Production Engineering

, Volume 11, Issue 2, pp 117–124 | Cite as

High-speed and high-backdrivable actuation system considering variable-structured elastic design

Production Management


This paper proposes a high-speed high-backdrivable actuator using a new actuation structure. To realize a small-sized high-torque actuator, a reduction gear is usually used. Because of the current saturation and friction effect of the actuator, the actuator has maximum values of acceleration and rotation speed. A gear with a high gear ratio reduces these two maximum values because of the presence of a reduction mechanism. The trade-off between the output torque and rotation speed exists. Consequently, it is difficult to achieve high-speed motions using a gear. Moreover, the reduction mechanism increases the friction of the motor and deteriorates its backdrivability. Therefore, in this study, a new actuation mechanism is utilized to solve such problems. The new mechanism consists of an electromagnetic clutch and elastic spring. High backdrivability and high-speed motion are achieved by releasing the clutch and transforming the elastic potential energy accumulated by the geared motor into kinetic energy, respectively. In the proposed system, the output rotation speed exceeds the maximum rotation speed obtained after it is reduced by the gear. Finally, the validity of the proposed method is verified experimentally.


Mechatronics Actuator High-speed motion Elastic potential energy Backdrivability Electromagnetic clutch 


  1. 1.
    Pratt G, Williamson M (1995) Series elastic actuators. In: Proc. 1995 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol 1, pp 399–406. doi:10.1109/IROS.1995.525827
  2. 2.
    Robinson DW, Pratt JE, Paluska DJ, Pratt GA (1999) Series elastic actuator development for a biomimetic walking robot. In: Proc. (1999) IEEE/ASME Int. Conf. Adv. Intelligent Mechatron, pp 561–568. doi:10.1109/AIM.1999.803231
  3. 3.
    Kong K, Bae J, Tomizuka M (2009) Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications. IEEE/ASME Trans Mechatron 14(1):105. doi:10.1109/TMECH.2008.2004561 CrossRefGoogle Scholar
  4. 4.
    Tonietti G, Schiavi R, Bicchi A (2005) Design and control of a variable stiffness actuator for safe and fast physical human, robot interaction, In: Proc. (2005) IEEE Int. Conf. Robotics and Autom., pp 526–531. doi:10.1109/ROBOT.2005.1570172
  5. 5.
    Schiavi R, Grioli G, Sen S, Bicchi A (2008) Vsa-ii: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In Proc. (2008) IEEE Int. Conf. Robotics and Autom. pp 2171–2176. doi:10.1109/ROBOT.2008.4543528
  6. 6.
    Ugurlu B, Tsagarakis NG, Spyrakos-Papastavridis E, Caldwell DG (2011) Compliant joint modification and real-time dynamic walking implementation on bipedal robot ccub. In: Proc. (2011) IEEE Int. Conf. Mechatron, pp 833–838. doi:10.1109/ICMECH.2011.5971230
  7. 7.
    Hobbelen D, de Boer T, Wisse M (2008) System overview of bipedal robots flame and tulip: Tailor-made for limit cycle walking. In: Proc. (2008) IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp 2486–2491. doi:10.1109/IROS.2008.4650728
  8. 8.
    Abe K, Suga T, Fujimoto Y (2012) Control of a biped robot driven by elastomer-based series elastic actuator. In: Proc. (2012) 12th IEEE Int. Workshop Adv. Motion Control, pp 1–6. doi:10.1109/AMC.2012.6197136
  9. 9.
    Li J, Jin D, Zhang X, Zhang J, Gruver W (1995) An electrorheological fluid damper for robots. In: Robotics and Automation, 1995. Proceedings, 1995 IEEE International Conference on, vol 3 , pp 2631–2636. doi: 10.1109/ROBOT.1995.525654
  10. 10.
    Rabinow J (1948) The magnetic fluid clutch. Trans Am Inst Electr Eng 67(2):1308. doi: 10.1109/T-AIEE.1948.5059821
  11. 11.
    Chew CM, Hong GS, Zhou W (2004) Series damper actuator: a novel force/torque control actuator. In: Proc. 2004 4th IEEE/RAS Int. Conf. Humanoid Robots, vol 2, pp 533–546. doi:10.1109/ICHR.2004.1442669
  12. 12.
    Furusho J, Takesue N (2016) Research and development of functional fluid mechatronics, rehabilitation systems, and mechatronics of flexible drive systems. J Robot Mechatron 28(1):5CrossRefGoogle Scholar
  13. 13.
    Najmaei N, Asadian A, Kermani MR, Patel RV (2016) Design and performance evaluation of a prototype mrf-based haptic interface for medical applications. IEEE/ASME Trans Mechatron 21(1):110. doi:10.1109/TMECH.2015.2429140 Google Scholar
  14. 14.
    Chapuis D, Michel X, Gassert R, Chew CM, Burdet E, Bleuler H (2007) A haptic knob with a hybrid ultrasonic motor and powder clutch actuator. In: Proc. Second joint EuroHaptics Conf. Symposium on Haptic Interfaces for Virtual Environ. Teleoperator Systems, pp 200–205. doi:10.1109/WHC.2007.5
  15. 15.
    Lauzier N, Gosselin C (2011) Series clutch actuators for safe physical human–robot interaction. In: Proc. (2011) IEEE Int. Conf. Robotics and Automation, pp 5401–5406. doi:10.1109/ICRA.2011.5979601
  16. 16.
    Rouse EJ, Mooney LM, Martinez-Villalpando EC, Herr HM (2013) Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption. In: Proc. IEEE Int. Conf. Rehabilitation. Robotics (ICORR), pp 1–6. doi:10.1109/ICORR.2013.6650383
  17. 17.
    Haeufle DFB, Taylor MD, Schmitt S, Geyer H (2012) A clutched parallel elastic actuator concept: towards energy efficient powered legs in prosthetics and robotics. In: Proc. 4th IEEE RAS EMBS Int. Conf. Biomedical Robotics, 2012, pp 1614–1619. doi:10.1109/BioRob.2012.6290722
  18. 18.
    Plooij M, van Nunspeet M, Wisse M, Vallery H (2015) Design and evaluation of the bi-directional clutched parallel elastic actuator (bic-pea). In: Proc. IEEE Inter. Conf. Robotics and Automation (ICRA), 2015, pp 1002–1009. doi:10.1109/ICRA.2015.7139299
  19. 19.
    Leach D, Gunther F, Maheshwari N, Iida F (2014) Linear multimodal actuation through discrete coupling. IEEE/ASME Trans Mechatron 19(3):827. doi:10.1109/TMECH.2013.2261532 CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2017

Authors and Affiliations

  1. 1.Department of System Design EngineeringKeio UniversityYokohamaJapan

Personalised recommendations