Production Engineering

, Volume 11, Issue 2, pp 97–106 | Cite as

Self-optimizing injection molding based on iterative learning cavity pressure control

Production Process


Modern injection molding machines can reproduce machine values, such as the position and speed of the plasticizing screw, with a high precision. To achieve a further improvement of the part quality, adaption and self-optimization strategies are required, which is realized by the implementation of a model-based self-optimization to an injection molding machine. Within this concept, a pvT-optimization allows an online control of the holding pressure that is tailored to the plastics material, considering the relationship between pressure, specific volume and temperature. A control strategy is required that controls the cavity pressure with respect to the reference generated by the pvT-optimization. However, cavity pressure control, in contrast to pressure control in the plasticizing unit, is hitherto not possible without a time-consuming system parametrization. Due to the repetitive character of the injection molding process, the iterative learning control (ILC) is a suitable approach. The ILC uses information gained within the previous cycle and a model to generate the optimal controller outputs for the following cycle. Based on this iterative learning, the reference tracking of the cavity pressure can be improved over several cycles. Additionally, repetitive disturbances can be compensated automatically. To improve the convergence speed of the ILC, a process model can be used explicitly. Based on this premise, an ILC for cavity pressure control is developed and researched in injection molding experiments. It is shown that the flexibility of the control strategy can be improved without compromising performance.


Iterative learning control Injection molding Cavity pressure control Model-based self-optimization 



The depicted research has been funded by the German Research Foundation DFG as part of the program Cluster of Excellence ‘Integrative Production Technology for High-Wage Countries’. We would like to extend our thanks to the DFG. We would also like to thank Arburg GmbH & Co. KG, Loßburg, Germany, and Sabic Deutschland GmbH & Co. KG, Düsseldorf, Germany, who provided machines and materials for the depicted research.


  1. 1.
    Menges G, Stitz S, Vargel J (1971) Grundlagen der Prozeßsteuerung beim Spritzgießen. Kunststoffe 61 (2):74–80Google Scholar
  2. 2.
    Gao F, Yang Y (1997) Multi-variable interaction analysis and a proposed quality control system for thermoplastics injection molding. In: Society of Plastics Engineers, ANTEC 1997 Conference Proceedings, Toronto, Canada, p 480Google Scholar
  3. 3.
    Schreiber A (2011) Regelung des Spritzgießprozesses auf Basis von Prozessgrößen und im Werkzeug ermittelter Materialdaten. RWTH, AachenGoogle Scholar
  4. 4.
    Sarholz R (1979) Spritzgießen: Verfahrensablauf, Verfahrensparameter, Prozeßführung. Hanser, MünchenGoogle Scholar
  5. 5.
    Gordon G, Kazmer DO, Tang X, Fan Z, Gao RX (2015) Quality control using a multivariate injection molding sensor. Int J Adv Manuf Technol 78(9):1381–1391. doi: 10.1007/s00170-014-6706-6 CrossRefGoogle Scholar
  6. 6.
    Hengesbach JA (1976) Verbesserung der Prozeßführung beim Spritzgießen durch Prozeßüberwachung. Dissertation, RWTH AachenGoogle Scholar
  7. 7.
    Kruppa S (2015) Adaptive Prozessführung und alternative Einspritzkonzepte beim Spritzgießen von Thermoplasten. Dissertation, Universität Duisburg-EssenGoogle Scholar
  8. 8.
    Heinzler F (2014) Modellgestützte Qualitätsregelung durch eine adaptive, druckgeregelte Prozessführung beim Spritzgießen. Dissertation, Universität Duisburg-EssenGoogle Scholar
  9. 9.
    Brecher C, Karmann O, Kozielski S (2011) Integrative Produktionstechnik für Hochlohnländer. Springer, Berlin. doi: 10.1007/978-3-642-20693-1_1 CrossRefGoogle Scholar
  10. 10.
    Stitz S (1973) Analyse der Formteilbildung beim Spritzgießen von Plastomeren als Grundlage für die Prozeßsteuerung. Dissertation, RWTH AachenGoogle Scholar
  11. 11.
    Stitz S, Hengesbach H-A, Pütz D (1973) Konstante Formteilqualität beim Spritzgießen durch Regeln des Werkzeug-Druckverlaufs. Kunststoffe 63 (11):777–783Google Scholar
  12. 12.
    Abu Fara D, Patterson WI, Kamal MR (1987) Cavity pressure control in injection molding during filling, packing, and holding. In: Society of Plastics Engineers, ANTEC 1987 Conference Proceedings, Los Angeles, USA, pp 221–224Google Scholar
  13. 13.
    Gao F, Patterson WI, Kamal MR (1996) Cavity pressure dynamics and self-tuning control for filling and packing phases of thermoplastics injection molding. Polym Eng Sci 36(9):1272–1285CrossRefGoogle Scholar
  14. 14.
    Rafizadeh M (1996) Physically-based dynamic model for the control of cavity pressure in thermoplastics injection molding. Dissertation, McGill University, Montreal, CanadaGoogle Scholar
  15. 15.
    Kudlik N (1997) Reproduzierbarkeit des Kunststoff-Spritzgießprozesses. Dissertation, RWTH AachenGoogle Scholar
  16. 16.
    Hopmann C, Reßmann A, Reiter M, Stemmler S, Abel D (2015) A self-optimising injection moulding process with model-based control system parameterisation. Int J Comput Integr Manuf 29(11):1–10Google Scholar
  17. 17.
    Gao F, Yang Y, Shao C (2001) Robust iterative learning control with applications to injection molding process. Chem Eng Sci 56 (24):7025–7034CrossRefGoogle Scholar
  18. 18.
    Tan KK, Tang JC (2002) Learning-enhanced PI control of ram velocity in injection molding machines. Eng Appl Artif Intell 15(1):65–72. doi: 10.1016/S0952-1976(02)00032-5 CrossRefGoogle Scholar
  19. 19.
    Havlicsek H AA (2002) Learning enhanced PI control of ram velocity in injection molding machines. IEEE/ASME Trans Mechatron 15(1):312–323Google Scholar
  20. 20.
    Chuang L, Fuli W, Dapeng N, Yang L (2010) Cavity pressure control by iterative learning control with zero-phase filtering in injection molding. In: 2010 Chinese Control and Decision Conference, Xuzhou, China 26–28 May 2010. pp 376–379. doi: 10.1109/CCDC.2010.5499047
  21. 21.
    Anon (2008) Anwenderfreundlich per Referenzkurven regeln. K Zeitung 39 (1/2):15Google Scholar
  22. 22.
    Permin E, Bertelsmeier F, Blum M, Buetzler J, Haag S, Kuz S, Oezdemir D, Stemmler S, Thombansen U, Schmitt R, Brecher C, Schlick C, Abel D, Poprawe R (2015) Peter Loosen Wolfgang Schulz GS Self-optimizing production systems. In: 48th CIRP Conference on MANUFACTURING SYSTEMS- CIRP CMS, 2015. Ischia (Naples), ItalyGoogle Scholar
  23. 23.
    Thombanse U, Auerbach T, Schüttler J, Beckers M, Buchholz G, Eppelt U, Gloy Y-S, Fritz P, Kratz S, Lose J, Molitor T, Reßmann A, Schenuit H, Willms K, Gries T, Michaeli W, Petring D, Poprawe R, Reisgen U, Schmitt R, Schulz W, Veselovac D, Klocke F (2012) The road to self-optimising production technologies. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin, pp 793–848Google Scholar
  24. 24.
    Brecher C (2007) Integrative production technology—theory and applications. Springer, BerlinGoogle Scholar
  25. 25.
    Johnston SP, Mendible GA, Gao RX, Kazmer DO (2015) Estimation of bulk melt-temperature from in-mold thermal sensors for injection molding, Part a: method. Int Polym Proces 30 (4):460–466. doi: 10.3139/217.3019 CrossRefGoogle Scholar
  26. 26.
    Seyfarth P (1962) Zur Bestimmung der Zykluszeit beim Spritzgießen. Plaste Kautschuk 9 (11):553–556Google Scholar
  27. 27.
    Hopmann C, Theunissen M, Heinisch J (2016) Compensating viscosity fluctuations in injection moulding. In: Proceedings of the 32nd International Conference of the Polymer Processing Society (PPS32), Lyon, Frankreich, 2016. Lyon, FranceGoogle Scholar
  28. 28.
    Schmidt TW (1986) Zur Abschätzung der Schwindung. Dissertation, RWTH AachenGoogle Scholar
  29. 29.
    Hopmann C, Reßmann A, Heinisch J (2016) Influence on product quality by pvT-optimised processing in injection compression molding. Int Polym Proces 31 (2):156–165CrossRefGoogle Scholar
  30. 30.
    Michaeli W, Gruber J (2005) Prozessführung beim Spritzgießen—direkte Regelung des Werkzeuginnendrucks steigert die Reproduzierbarkeit. Zeitschrift Kunststofftechnik 1(1):1–12Google Scholar
  31. 31.
    Matzke A (1985) Prozeßrechnereinsatz beim Spritzgießen. Dissertation, RWTH AachenGoogle Scholar
  32. 32.
    Rockel H (2005) Analyse und Synthese parametrisch iterativ lernender Regelungen. Dissertation, Technische Universität ClausthalGoogle Scholar
  33. 33.
    Seel T, Schauer T, Raisch J (2013) Iterativ Lernende Regelung mit variabler Zykluslänge für FES-basierte Kompensation einer Fußheberschwäche. Automatisierungstechnik 61 (9):630–637CrossRefGoogle Scholar
  34. 34.
    Chen Y, Moore KL (2002) PI-type iterative learning control revisited. In: Proceedings of the American Control ConferenceGoogle Scholar
  35. 35.
    Lee JH, Lee KS, Kim WC (2000) Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica 36(5):641–657MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    KL Moore, YQ Chen, V Bahl (2005) Monotonically convergent iterative learning control for linear discrete-time systems. Automatica 41(9)1529–1537, ISSN 0005-1098. doi: 10.1016/j.automatica.2005.01.019.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Stemmler S, Reiter M, Abel D (2015) Model predictive control as a module for autonomous operation of complex plastics production processes. Rubber Fibres Plast 10 (1):56–59Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2017

Authors and Affiliations

  1. 1.Institute of Plastics Processing (IKV)RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Automatic Control (IRT)RWTH Aachen UniversityAachenGermany

Personalised recommendations