Advertisement

Production Engineering

, Volume 10, Issue 4–5, pp 459–470 | Cite as

Tribological measures for controlling material flow in sheet-bulk metal forming

  • M. Löffler
  • K. Andreas
  • U. Engel
  • R. Schulte
  • D. Groebel
  • E. Krebs
  • D. Freiburg
  • D. Biermann
  • D. Stangier
  • W. Tillmann
  • T. Weikert
  • S. Wartzack
  • S. Tremmel
  • H. Lucas
  • B. Denkena
  • M. Merklein
Production Process

Abstract

Sheet-bulk metal forming (SBMF) is characterized by successive and/or simultaneous occurrence of quite different load conditions regarding stress and strain states. These conditions significantly influence the material flow and thus the geometrical accuracy of the components. To improve the product quality a control of the material flow is required. An appropriate approach is given by locally adapted tribological conditions due to surface modifications of tool and workpiece, so-called tailored surfaces. Within the present study different methods to adapt the surfaces are presented and investigated with respect to their tribological effectiveness in SBMF. In a first step, requirements regarding necessary adaptions of the friction values for two SBMF processes are numerically defined. Based on the requirements different tailored surfaces are presented and analyzed regarding their tribological influence. Finally, the potential of surface modifications to improve SBMF processes is shown.

Keywords

Tribology Surface modification Sheet-bulk metal forming 

Notes

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre on sheet-bulk metal forming (CRC/TR 73, Subprojects A1, A2, B2, B3, B4, B5, B8 and C1).

References

  1. 1.
    Kleiner M, Geiger M, Klaus A (2003) Manufacturing of lightweight components by metal forming. Ann CIRP 52(2):521–542CrossRefGoogle Scholar
  2. 2.
    Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. Ann CIRP 61(2):725–745CrossRefGoogle Scholar
  3. 3.
    Klocke F, Dambon O, Behrens B (2011) Analysis of defect mechanisms in polishing of tool steels. Prod Eng Res Dev 5(5):475–483CrossRefGoogle Scholar
  4. 4.
    Lange K (1985) Handbook of metal forming. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Lange K, Kammerer M, Pöhlandt K, Schöck J (2008) Fließpressen. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Bartz W (2004) Tribologie und Schmierung bei der Massivumformung. Expert Verlag, RenningenGoogle Scholar
  7. 7.
    Tosha K (2008) Effect of shot peening on surface integrity. In: Tosha K (ed) Prof. ICSP 10. DGM-Informationsgesellschaft, TokyoGoogle Scholar
  8. 8.
    Vierzigmann U, Schneider T, Koch J, Gröbel D, Merklein M, Engel U, Hense R, Biermann D, Krebs E, Kersting P, Henning L, Denkena B, Herper J, Tillmann W (2013) Untersuchungen von Tailored Surfaces für die Blechmassivumformung mittels angepasstem Ringstauchversuch. In: Merklein M, Behrens BA, Tekkaya AE (eds) 2. Workshop Blechmassivumformung. Bamberg, Meisenbach, pp 137–162Google Scholar
  9. 9.
    Fontaine J, Donnet C, Erdemir A (2008) Fundamentals of the Tribology of DLC Coatings. In: Donnet C, Erdemir A (eds) Tribology of Diamond-Like Carbon Films. Springer, New York, pp 139–154CrossRefGoogle Scholar
  10. 10.
    Strondl C, Carvalho NM, DE Hosson JTHM, Krug TG (2005) Influence of energetic ion bombardment on W-C: H coatings deposited with W and WC targets. Surf Coat Technol 200(1–4):1142–1146CrossRefGoogle Scholar
  11. 11.
    Voevodin AA (2008) Hard DLC growth and inclusion in nanostructured wear-protective coatings. In: Donnet C, Erdemir A (eds) Tribology of diamond-like carbon films. Springer, New York, pp 263–281CrossRefGoogle Scholar
  12. 12.
    Hetzner H, Tremmel S, Wartzack S (2012) Amorphous carbon coatings for locally adjusted tribological properties in sheet bulk metal forming. Key Eng Mater 504–506:969–974CrossRefGoogle Scholar
  13. 13.
    Polcar T, Cvrcek L, Siroky P, Novák R (2005) Tribological characteristics of CrCN coatings at elevated temperature. Vacuum 80(1–3):113–116CrossRefGoogle Scholar
  14. 14.
    Zhoua H, Chena L, Wanga W, Renc LQ, Shana HY, Zhanga ZH (2005) Abrasive particle wear behavior of 3Cr2W8V steel processed to bionic non-smooth surface by laser. Mater Sci Eng A 412(1–2):323–327CrossRefGoogle Scholar
  15. 15.
    Kitamura K, Makino T, Nawa M, Miyata S (2016) Tribological effects of punch with micro-dimples in blanking under high hydrostatic pressure. CIRP Ann Manuf Technol (in press) Google Scholar
  16. 16.
    Kersting P, Gröbel D, Merklein M, Sieczkarek P, Wernicke S, Tekkaya AE, Krebs E, Freiburg D, Biermann D, Weikert T, Tremmel S, Stangier D, Tillmann W, Matthias S, Reithmeier E, Löffler M, Beyer F, Willner K (2016) Experimental and numerical analysis of tribological effective surfaces for forming tools in sheet-bulk metal forming. In: Production engineering. Research and development, pp 1–14. doi: 10.1007/s11740-015-0651-6
  17. 17.
    Zabel A, Surmann T, Peuker A (2008) Surface structuring and tool path planning for efficient milling of dies. In: 7th international conference on high speed machining proceedings, pp 155–160Google Scholar
  18. 18.
    Denkena B, Grove T, Lucas H (2016) Influences of grinding with Toric CBN grinding tools on surface and subsurface of 1.3344 PM steel. J Mater Process Technol 229:541–548CrossRefGoogle Scholar
  19. 19.
    Löffler M, Andreas K, Engel U, Merklein M (2016) Applicability of blasted blanks for adaption of tribological conditions in sheet-bulk metal forming. Procedia CIRP 45:239–242CrossRefGoogle Scholar
  20. 20.
    Löffler M, Gröbel D, Engel U, Andreas K, Merklein M (2015) Analysis of effectiveness of locally adapted tribological conditions for improving product quality in sheet-bulk metal forming. Appl Mech Mater 794:81–88CrossRefGoogle Scholar
  21. 21.
    Löffler M, Schneider T, Vierzigmann U, Engel U, Merklein M (2015) Locally adapted tribological conditions as a method for influencing the material flow in sheet-bulk metal forming processes. Key Eng Mater 639:267–274CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2016

Authors and Affiliations

  • M. Löffler
    • 1
  • K. Andreas
    • 1
  • U. Engel
    • 1
  • R. Schulte
    • 1
  • D. Groebel
    • 1
  • E. Krebs
    • 2
  • D. Freiburg
    • 2
  • D. Biermann
    • 2
  • D. Stangier
    • 3
  • W. Tillmann
    • 3
  • T. Weikert
    • 4
  • S. Wartzack
    • 4
  • S. Tremmel
    • 4
  • H. Lucas
    • 5
  • B. Denkena
    • 5
  • M. Merklein
    • 1
  1. 1.Institute of Manufacturing TechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Institute of Machining TechnologyTechnische Universität DortmundDortmundGermany
  3. 3.Institute of Materials EngineeringTechnische Universität DortmundDortmundGermany
  4. 4.Institute of Engineering DesignFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  5. 5.Institute of Production Engineering and Machine ToolsLeibniz Universität HannoverHannoverGermany

Personalised recommendations