Production Engineering

, Volume 10, Issue 4–5, pp 433–441 | Cite as

Repairing parts from nickel base material alloy by laser cladding and ball end milling

  • V. Böß
  • B. Denkena
  • V. Wesling
  • S. Kaierle
  • F. RustEmail author
  • D. Nespor
  • B. Rottwinkel
Production Process


Due to rising costs of raw material, companies of the aerospace industry increasingly seek to repair components of aircraft engines instead of replacing them. Particularly the clad repair of turbine blades made of high strength nickel-base alloys with directionally solidified or single crystalline structure is a difficult issue, especially due to high requirements regarding the conditions of the final part surface. The present work deals with the question whether the prediction of surface and subsurface conditions, e.g. surface topography and residual stresses, is possible after repairing the inhomogeneous nickel-base alloy Rene 80. For this purpose, laser deposition cladding is applied for the polycrystalline Rene 80, using the filler material Rene 142. In the following re-contouring process, the claddings are milled with a ball end mill cutter. The influence of the inhomogeneous base material and the shape of the clad on the cutting forces as well as the final part surface are experimentally investigated. Superficial residual stresses are measured and evaluated. The cutting forces and the final surface reveal characteristic variations in the area of the material deposition and the dendrites. A geometric process simulation shows that the prediction of cutting forces and surface conditions for the polycrystalline material is only possible to some extent.


Laser welding Ball end milling Re-contouring Process design 



The authors thank the German Research Foundation (DFG) for the financial support within the Collaborative Research Center 871: Regeneration of complex capital goods, as well as the Institute for Connecting and Welding Technologies (IFS) for carrying out measurements on claded specimens.


  1. 1.
    Zheng J, Li Z, Chen X (2006) Worn area modeling for automating the repair of turbine blades. Int J Adv Manuf Technol 29(9–10):1062–1067CrossRefGoogle Scholar
  2. 2.
    Eberlein A (2007) Phases of high-tech repair implementation. In: 18th International Symposium on Airbreathing Engines (ISABE), BeijingGoogle Scholar
  3. 3.
    Gao J, Chen X, Yilmaz O, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36(11–12):1170–1179CrossRefGoogle Scholar
  4. 4.
    Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys. Int J Mach Tools Manuf 51(3):250–280CrossRefGoogle Scholar
  5. 5.
    Böß V, Nespor D, Samp A, Denkena B (2013) Numerical simulation of process forces during re-contouring of welded parts considering different material properties. CIRP J Manuf Sci Technol 6(3):167–174CrossRefGoogle Scholar
  6. 6.
    Denkena B, Nespor D, Böß V, Köhler J (2014) Residual stresses formation after re-contouring of welded Ti–6Al–4V parts by means of 5-axis ball nose end milling. CIRP J Manuf Sci Technol 7(4):347–360CrossRefGoogle Scholar
  7. 7.
    Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes. CIRP Ann—Manuf Technol 60(2):603–626CrossRefGoogle Scholar
  8. 8.
    Santos EC, Kida K, Carroll P, Vilar R (2010) Optimization of laser deposited Ni-based single crystal superalloys microstructure. Adv Mater Res 154–155:1405–1414CrossRefGoogle Scholar
  9. 9.
    Gäumann M, Henry S, Cléton F, Wagnière J-D, Kurz W (1999) Epitaxial laser metal forming. Mater Sci Eng A 271(1–2):232–241CrossRefGoogle Scholar
  10. 10.
    Vitek JM, David SA, Babu SS, Park JW (2002) Welding and weld repair of single crystal gas turbine alloys, EPRI-RRAC Fifth International Conference on Welding and Repair Technology for Power PlantsGoogle Scholar
  11. 11.
    Gäumann M, Bezençon C, Canalis P, Kurz W (2001) Single-crystal laser deposition of superalloys. Acta Mater 49(6):1051–1062CrossRefGoogle Scholar
  12. 12.
    Mokadem S, Bezencon C, Drezet J-M, Jacot A, Wagnière J-D, Kurz W (2004) Microstructure control during single crystal welding and deposition of Ni-base superalloys. In: Proceedings of symposium on solidfication processes and microstructures. TMS Annual Meeting, pp 67–75Google Scholar
  13. 13.
    Glavicic MG, Sargent K, Kobryn P, Semiatin S (2003) The repair of single crystal nickel superalloy turbine blades using laser engineered net shape (lens) technology, Airforce Research LaboratoryGoogle Scholar
  14. 14.
    Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys. J Mater Process Technol 86(1–3):1–16CrossRefGoogle Scholar
  15. 15.
    Darwish S (2000) The impact of the tool material and the cutting parameters on surface roughness of supermet 718 nickel superalloy. J Mater Process Technol 97(1–3):10–18CrossRefGoogle Scholar
  16. 16.
    Rao B, Dandekar CR, Shin YC (2011) An experimental and numerical study on the face milling of Ti–6Al–4V alloy. J Mater Process Technol 211(2):294–304CrossRefGoogle Scholar
  17. 17.
    Denkena B, Böß V, Nespor D, Samp A (2011) Kinematic and stochastic surface topography of machined Ti–6Al–4V-parts by means of ball nose end milling. Procedia Eng 19:81–87CrossRefGoogle Scholar
  18. 18.
    Huang H, Zhou L, Chen XQ, Gong ZM (2003) SMART robotic system for 3D profile turbine vane airfoil repair. Int J Adv Manuf Technol 21(4):275–283CrossRefGoogle Scholar
  19. 19.
    Denkena B, Boess V, Nespor D, Rust F, Floeter F (2014) Approaches for improving cutting processes and machine tools in re-contouring. Procedia CIRP 22:239–242CrossRefGoogle Scholar
  20. 20.
    Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann—Manuf Technol 61(1):547–550CrossRefGoogle Scholar
  21. 21.
    Arrazola PJ, Kortabarria A, Madariaga A, Esnaola JA, Fernandez E, Cappellini C, Ulutan D, Özel T (2014) On the machining induced residual stresses in IN718 nickel-based alloy. Simul Model Pract Theory 41:87–103CrossRefGoogle Scholar
  22. 22.
    Uhlmann E, von der Schulenburg MG, Zettier R (2007) Finite element modeling and cutting simulation of inconel 718. CIRP Ann—Manuf Technol 56(1):61–64CrossRefGoogle Scholar
  23. 23.
    Grove T (2015) Hochleistungszerspanung von Titan. Dissertation, Leibniz Universität HannoverGoogle Scholar
  24. 24.
    Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters. Int J Mach Tools Manuf 41(15):2195–2212CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2016

Authors and Affiliations

  • V. Böß
    • 1
  • B. Denkena
    • 1
  • V. Wesling
    • 2
  • S. Kaierle
    • 3
  • F. Rust
    • 1
    Email author
  • D. Nespor
    • 1
  • B. Rottwinkel
    • 3
  1. 1.Leibniz Universitat HannoverHannoverGermany
  2. 2.Technische Universität Clausthal, Institut für Schweißtechnik und trennende FertigungsverfahrenClausthalGermany
  3. 3.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations