Advertisement

Production Engineering

, Volume 10, Issue 3, pp 241–252 | Cite as

A new approach for user-independent determination of formability of a steel sheet sheared edge

  • Matthias SchneiderEmail author
  • Ilya Peshekhodov
  • Anas Bouguecha
  • Bernd-Arno Behrens
Production Process

Abstract

It is common to use a forming limit curve (FLC) for a feasibility study of a deep-drawn steel part based on a finite element analysis (FEA). However, in such an approach a neglected fact is that a blank edge in industrial production is often produced by shear cutting. Especially, for many high strength steel grades, this cutting process notably reduces edge formability. An overestimation of formability of the blank edge, with an FLC, is the consequence that may lead to cracks at the sheared edge of a part. The following paper describes a new approach to determine formability of a sheet-steel sheared edge by hole expansion test that uses an FLC tool set. This approach delivers a hole expansion ratio with considerably lower scattering compared to the hole expansion according to ISO 16630. Additionally, information on the planar isotropy, flow and necking behavior of the material, is supplied. Finally, a pragmatical way of transferring test results into an FEA of the forming process for a sheet blank with a sheared edge is presented.

Keywords

Steel Formability Sheared edge Hole expansion Edge-crack Numerical simulation 

Notes

Acknowledgments

The research Project P 830/01/2010/S24/10170/09 “Investigation of damage and formability of the sheared edge of dual-phase steels with the help of the multiscale finite element analysis” has been carried out at the Institute of Forming Technology and Machines of the Leibniz Universität Hannover and the Salzgitter Mannesmann Forschung GmbH. FOSTA has accompanied the research work and has organized the project funding from the Foundation for Steel Application Research. The authors also thank B. Acun, M. Baeck and J. Parschukow for helping to build up SZMF-ARAMIS-macro and SZMF-EXCEL-macro for HET-NAK postprocessing in framework of their student thesis and H. Friebe, T. Möller and C. Blumenthal from GOM mbH for their work on usability of GOM-ARAMIS-macro.

References

  1. 1.
    Anonymous (2006) ISO 12004-2—Metallic materials—Sheet and strip—Determination of forming limit curves in laboratory. Standard, International Organization for Standardization, Genf, SwitzerlandGoogle Scholar
  2. 2.
    Hall J, Coryell J, Wendt B, Adamski D (2015) Case studies of edge fracture of dual phase steel stampings. SAE Technical Paper—SAE International Journal of Materials and Manufacturing, 8 (2015-01-0529), pp 783–788Google Scholar
  3. 3.
    Geoffroy J-L, Goncalves J, Lemoine X (2007) Adequately use FLC’s for simulation. In: International Deep Drawing Research Group 2007. Györ, HungaryGoogle Scholar
  4. 4.
    McEwan C, Underhill R, Langerak N, Botman G, de Bruine M (2009) A new approach to predicting edge splits—the combined FLC/HEC diagram. In: International Deep Drawing Research Group 2009. Golden, USAGoogle Scholar
  5. 5.
    Chen X (2012) Development of simulation technology for forming of advanced high strenth steel. Dissertation, McMaster University, Mechanical Engineering, Hamilton, CanadaGoogle Scholar
  6. 6.
    Anonymous (2009) ISO 16630—Metallic materials—Method of hole expanding test. Standard, International Organization for Standardization, Genf, SwitzerlandGoogle Scholar
  7. 7.
    Braun M, Borsutzki M, Bülter M, Carlsson B, Larour P, Richter A et al (2011) Ergebnis eines europäischen Ringversuchs zum Lochaufweitungsversuch nach ISO 16630. DVM-Tagung-Neue Entwicklung in der WerkstoffprüfungHerausforderungen an die Kennwertermittlung. Berlin, GermanyGoogle Scholar
  8. 8.
    Krempaszky C, Larour P, Freudenthaler J, Werner E (2014) Towards more efficient hole expansion testing. In: International Deep Drawing Research Group 2014. Paris, FranceGoogle Scholar
  9. 9.
    Schneider M, Geffert A, Peshekhodov I, Bouguecha A, Behrens B-A (2015) Overview and comparison of various test methods to determine formability of a sheet metal cut-edge and approaches to the test results application in forming analysis. Mater Sci Eng Technol 46(12):1145–1225Google Scholar
  10. 10.
    Braun M, Richter A, Larour P, Atzema C, Neuhaus R, Bülter M et al (2013) Determination of edge cracking sensitivity—evaluation of the reduced formability of shear-cut steel panel edges with different test methods. Forming in Car Body Engineering, Bad Nauheim, GermanyGoogle Scholar
  11. 11.
    Illig HR (2006) Analyse der Kantenrissempfindlichkeit. BMW Group, Dingolfing, GermanyGoogle Scholar
  12. 12.
    Held C, Liewald M, Sindel M (2010) Erweiterte Werkstoffprüfungsverfahren zur Charakterisierung von Leichtbaublechwerkstoffen im Hinblick auf die Kantenrisssensitivität in der Umformtechnik. (Carl Hanser Verlag GmbH & Co.KG, Ed.) Materials Testing, 52 (9), 596–602Google Scholar
  13. 13.
    Beier T, Gula G, Woestmann S, Keßler L (2015) Eine Bewertung des Umformpotenzials von Schnittkanten zur Auslegung von Formgebungsprozessen mit höherfesten Stahlwerkstoffen. 35. EFB-Kolloquium Blechverarbeitung. Bad Boll, Germany: Europäische Forschungsgesellschaft für Blechverarbeitung e.VGoogle Scholar
  14. 14.
    Yoshida H, Yoshida T, Miyagi T, Sato K, Nitta J, Suehiro M (2013) Evaluation method of stretch flange-ability by strain concentration and strain gradient. In: International Deep Drawing Research Group 2013. Zürich, SwitzerlandGoogle Scholar
  15. 15.
    Sriram S, Chintamani J (2005) Guidelines for stretch flanging advanced high strength steels. In: The 6th international conference and workshop on numerical simulation of 3D sheet metal forming processes (NUMISHEET 2005). Detroit, USAGoogle Scholar
  16. 16.
    Chiriac C, Shi M, Link T (2012) The prestrain effect on the sheared edge flangeability of dual phase 780 steels. SAE Technical Paper (2012-01-0533)Google Scholar
  17. 17.
    Chiriac C, Shi MF (2015) Experimental study of edge stretching limits of DP980IBF steel in multistage forming process. SAE Technical Paper—SAE International Journal of Materials and Manufacturing, 8 (2015-01-0525), pp 415–418Google Scholar
  18. 18.
    Held C, Schleich R, Sindel M, Liewald M (2009) Schnittkantenverfestigung und Umformbarkeit. Bänder Rohre Profile 8–9:16–17Google Scholar
  19. 19.
    Behrens B-A, Vucetic M, Peshekhodov I, Schneider M (2015) Numerische Beschreibung der Schädigung beim Scherschneiden und des verbleibenden Restumformvermögens für Dualphasenstähle mithilfe der Multiskalensimulation. Forschungsvereinigung Stahlanwendung e. V (FOSTA)Google Scholar
  20. 20.
    Gläsner T, Imat V, Schneider M, Theiß M, Westhäuser S (2015, 12 12) (M. V. GmbH, Ed.) Retrieved December 4, 2015, from Berücksichtigung der Kantenrissempfindlichkeit in der Umformsimulation: http://www.umformtechnik.net/binary_data/3208771_2015-09-30-final.pdf
  21. 21.
    Behrens B-A, Bouguecha A, Sidhu KB, Matthias T, Peshekhodov I (2011) New strategies in finite element analysis of material processing. Lect Notes Appl Comput Mech 57:117–131MathSciNetCrossRefGoogle Scholar
  22. 22.
    Peshekhodov I, Schneider M (2013) Numerical investigations on cutting of dual-phase sheet steel with an emphasis on material damage at the cut edge. Adv Mater Res 769:101–108CrossRefGoogle Scholar
  23. 23.
    Anonymous (2004) DIN-Taschenbuch - Band 46 - Stanzwerkzeuge (DIN-Taschenbuch ed.). Berlin. Germany: Beuth Verlag GmbHGoogle Scholar
  24. 24.
    Anonymous (2004) ARAMIS user guide. User manual, Gesellschaft für Optische Messtechnik mbH, Braunschweig, GermanyGoogle Scholar
  25. 25.
    Schneider M, Eggers U (2011) Investigation on punched edge formability. In: International Deep Drawing Research Group 2011. Bilbao, SpainGoogle Scholar
  26. 26.
    Larour P, Freudenthaler J, Grünsteidl A, Wang K (2014) Evaluation of alternative stretch flangeability testing methods to ISO 16630 standard. In: International Deep Drawing Research Group 2014. Paris, FranceGoogle Scholar
  27. 27.
    Yoshida K, Abe K, Miyauchi K, Nakagawa T (1968) Instability and fracture behaviours in steel metal forming. In: International Deep Drawing Research Group 1968. Torino, ItaliaGoogle Scholar
  28. 28.
    Volk W, Jocham D, Gaber C, Böttcher O (2015) Neue Methodik zur Vorhersage des Materialversagens bei nicht-linearen Dehnwegen. 35. EFB-Kolloquium Blechverarbeitung. Bad Boll, GermanyGoogle Scholar
  29. 29.
    Schneider M (2012) Bewertungsmöglichkeiten für das Restumformvermögen einer durch Scherschneiden vorgeschädigten Blechkante. 32. EFB-Kolloquium Blechverarbeitung. Bad Boll, Germany. pp 193–208Google Scholar
  30. 30.
    Gläsner T, Imat V, Theiß M, Volk W, Hoffmann H, Golle R (2015, 02 23) (M. V. GmbH, Ed.) Retrieved June 26, 2015, from Erhöhung der Vorhersagegenauigkeit in der Umformsimulation durch eine optimierte Vernetzungsstrategie: http://www.umformtechnik.net/binary_data/3175583_2015-02-23-radiale-vernetzung.pdf

Copyright information

© German Academic Society for Production Engineering (WGP) 2016

Authors and Affiliations

  • Matthias Schneider
    • 1
    Email author
  • Ilya Peshekhodov
    • 2
  • Anas Bouguecha
    • 2
  • Bernd-Arno Behrens
    • 2
  1. 1.Department of Engineering and SimulationSalzgitter Mannesmann Forschung GmbH (SZMF)SalzgitterGermany
  2. 2.Institute of Forming Technology and MachinesLeibniz Universität HannoverHannoverGermany

Personalised recommendations