Advertisement

Production Engineering

, Volume 10, Issue 1, pp 5–15 | Cite as

Investigations of ductile damage during the process chains of toothed functional components manufactured by sheet-bulk metal forming

  • Kerim IsikEmail author
  • Gregory Gerstein
  • Thomas Schneider
  • Robert Schulte
  • Daniel Rosenbusch
  • Till Clausmeyer
  • Florian Nürnberger
  • Milan Vucetic
  • Sergej Koch
  • Sven Hübner
  • Bernd-Arno Behrens
  • A. Erman Tekkaya
  • Marion Merklein
Production Process

Abstract

Sheet-bulk metal forming processes combine conventional sheet forming processes with bulk forming of sheet semi-finished parts. In these processes the sheets undergo complex forming histories. Due to in- and out-of-plane material flow and large accumulated plastic strains, the conventional failure prediction methods for sheet metal forming such as forming limit curve fall short. As a remedy, damage models can be applied to model damage evolution during those processes. In this study, damage evolution during the production of two different toothed components from DC04 steel is investigated. In both setups, a deep drawn cup is upset to form a circumferential gearing. However, the two final products have different dimensions and forming histories. Due to combined deep drawing and upsetting processes, the material flow on the cup walls is three-dimensional and non-proportional. In this study, the numerical and experimental investigations for those parts are presented and compared. Damage evolution in the process chains is simulated with a Lemaitre damage criterion. Microstructural analysis by scanning electron microscopy is performed in the regions with high mechanical loading. It is observed that the evolution of voids in terms of void volume fraction is strongly dependent on the deformation path. The comparison of simulation results with microstructural data shows that the void volume fraction decreases in the upsetting stage after an initial increase in the drawing stage. Moreover, the concurrent numerical and microstructural analysis provides evidence that the void volume fraction decreases during compression in sheet-bulk metal forming.

Keywords

Sheet-bulk metal forming Lemaitre damage model FE simulation 

Notes

Acknowledgments

The authors gratefully acknowledge funding by the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre on sheet-bulk metal forming (SFB/TR 73) in the subprojects A1 “Process combination for manufacturing of teethed, thin-walled functional components out of tailored blanks”, A7 “Improvement of combined cutting and deep drawing processes by means of overlaying dynamic process forces”, C4 “Analysis of load history dependent evolution of damage and microstructure for the numerical design of sheet-bulk metal forming processes”.

References

  1. 1.
    Merklein M, Tekkaya AE, Brosius A, Opel S, Koch J (2011) Overview on sheet-bulk metal forming processes. In: Proceedings of the 10th international conference on technology of plasticity, pp 1109–1114Google Scholar
  2. 2.
    Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. Ann CIRP 2(61):725–745CrossRefGoogle Scholar
  3. 3.
    Merklein M, Koch J, Opel S, Schneider T (2011) Fundamental investigations on the material flow at combined sheet and bulk metal forming processes. Ann CIRP 1(60):283–286CrossRefGoogle Scholar
  4. 4.
    Hosford WF, Caddell RM (1993) Metal forming—mechanics and metallurgy, 2nd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  5. 5.
    Soyarslan C, Faßmann D, Plugge B, Isik K, Kwiatkowski L, Schaper M, Brosius A, Tekkaya AE (2011) An experimental and numerical assessment of sheet-bulk formability of mild steel DC04. J Manuf Sci Eng 133(6):1–9CrossRefGoogle Scholar
  6. 6.
    Oyachi Y, Allwood JM (2011) Characterizing the class of local metal sheet thickening processes, steel research international, special edition. 10th International conference on technology of plasticity, ICTP 2011, pp 1025–1030Google Scholar
  7. 7.
    Li Y, Luo M, Gerlach J, Wierzbicki T (2010) Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol 210:1858–1869CrossRefGoogle Scholar
  8. 8.
    Lemaitre J (1992) A course on damage mechanics. Springer, BerlinCrossRefzbMATHGoogle Scholar
  9. 9.
    Badreddine H, Saanouni K, Dogui A (2010) On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming. Int J Plast 26:1541–1575CrossRefzbMATHGoogle Scholar
  10. 10.
    Ladevèze P, Lemaitre J (1984) Damage effective stress in quasi-unilateral condition. IUTAM Congress, LyngbyGoogle Scholar
  11. 11.
    Hubert C, Dubar L, Dubar M, Dubois A (2011) Finite element simulation of the edge-trimming/cold rolling sequence: analysis of edge cracking. J Mater Process Technol 212(5):1049–1060CrossRefGoogle Scholar
  12. 12.
    Mashayekhi M, Torabian N, Poursina M (2010) Continuum damage mechanics analysis of strip tearing in a tandem cold rolling process. Simul Model Pract Theory 19(2):612–625CrossRefGoogle Scholar
  13. 13.
    Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15CrossRefGoogle Scholar
  14. 14.
    Schneider T, Vierzigmann U, Merklein M (2014) Analysis of varying properties of semi-finished products in sheet-bulk metal forming of functional components. In: Yoon JW, Stoughton TB, Rolfe B, Beynon JH, Hodgson P (Hrsg.): NUMISHEET 2014: The 9th international conference and workshop on numerical simulation of 3D sheet metal forming processes, pp 930–933Google Scholar
  15. 15.
    Naunheimer H, Bertsche B, Ryborz J, Novak W (2011) Automotive transmissions: fundamentals, selection, design and application, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  16. 16.
    Behrens BA, Bouguecha A, Vucetic M, Hübner S, Rosenbusch D, Koch S (2015) Numerical and experimental investigations of multistage sheet-bulk metal forming process with compound press tools. In: ESAFORM 2015—key engineering materials (Hrsg.): 18th international ESAFORM conference on material forming, vol 651, pp 1153–1158Google Scholar
  17. 17.
    Isik K, Soyarslan C (2013) Continuum damage mechanics (CDM) based local approach to the sheet-bulk metal formability prediction. Adv Mater Res 769:205–212CrossRefGoogle Scholar
  18. 18.
    Lemaitre J, Desmorat R (2005) Engineering damage Mechanics. Springer, BerlinGoogle Scholar
  19. 19.
    Behrens BA, Voges-Schwieger K, Bouguecha A, Mielke J, Vucetic M (2012) Material characterization for sheet-bulk metal forming. Key Eng Mater 504–506:1029–1034CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2016

Authors and Affiliations

  • Kerim Isik
    • 1
    Email author
  • Gregory Gerstein
    • 2
  • Thomas Schneider
    • 3
  • Robert Schulte
    • 3
  • Daniel Rosenbusch
    • 4
  • Till Clausmeyer
    • 1
  • Florian Nürnberger
    • 2
  • Milan Vucetic
    • 4
  • Sergej Koch
    • 4
  • Sven Hübner
    • 4
  • Bernd-Arno Behrens
    • 4
  • A. Erman Tekkaya
    • 1
  • Marion Merklein
    • 3
  1. 1.Institute of Forming Technology and Lightweight ConstructionTechnical University of DortmundDortmundGermany
  2. 2.Institut für Werkstoffkunde (Materials Science)Leibniz Universität HannoverGarbsenGermany
  3. 3.Institute of Manufacturing TechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  4. 4.Institute of Forming Technology and Machines (IFUM)Leibniz Universität HannoverGarbsenGermany

Personalised recommendations