Advertisement

Production Engineering

, Volume 10, Issue 1, pp 37–50 | Cite as

Experimental and numerical analysis of tribological effective surfaces for forming tools in Sheet-Bulk Metal Forming

  • Petra Kersting
  • Daniel Gröbel
  • Marion Merklein
  • Peter Sieczkarek
  • Sebastian Wernicke
  • A. Erman Tekkaya
  • Eugen Krebs
  • Dennis Freiburg
  • Dirk Biermann
  • Tim Weikert
  • Stephan Tremmel
  • Dominic Stangier
  • Wolfgang Tillmann
  • Steffen Matthias
  • Eduard Reithmeier
  • Maria Löffler
  • Florian Beyer
  • Kai Willner
Production Process

Abstract

Sheet-Bulk Metal Forming (SBMF) allows the manufacture of complex parts with integrated functional form elements, such as teeth and thickened areas. Therefore, bulk forming operations are applied to sheets with initial thicknesses of 2 or 3 mm. The design and functionality of the tools are as important as the process itself. Therefore, the working group “Tools” of the Transregional Collaborative Research Centre on Sheet-Bulk Metal Forming (CRC/TR73) focuses on the optimization of the technical tool design. By varying topographies or applying tailored coatings, the friction behavior is changed to achieve a better form filling and to reduce process forces during the forming operations. In this paper, the potential of different tailored surfaces is validated by simulations and experimental studies. The tribological behavior of 14 surface microstructures is evaluated using a half-space model in order to select structures suitable for application. Those were characterized experimentally by ring-compression and pin-extrusion tests. The determined friction factors were used in a forming simulation to predict the form filling of small cavities in a flow forming operation. Furthermore, special attention is paid to the utilization of the anisotropic behavior of specific structures. The results were validated by an incremental gear forming process.

Keywords

Sheet-Bulk Metal Forming Tailored surfaces Milling technologies Coating technologies Forming simulations Tribology simulation 

Notes

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre on Sheet-Bulk Metal Forming (CRC/TR73, Workgroup “Tools”, Subprojects A2, A4, B2, B3, B4, B5, B6, and C1).

References

  1. 1.
    Merklein M, Allwood JM, Behrens B-A, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya E, Weckenmann A (2012) Bulk forming of sheet metal. CIRP Ann 61(2):725–745CrossRefGoogle Scholar
  2. 2.
    Gröbel D, Koch J, Vierzigmann U, Engel U, Merklein M (2014) Investigations and approaches on material flow of non-uniform arranged cavities in sheet bulk metal forming processes. Procedia Eng 81:401–406CrossRefGoogle Scholar
  3. 3.
    Löffler M, Gröbel D, Engel U, Andreas K, Merklein M (2015) Analysis of effectiveness of locally adapted tribological conditions for improving product quality in Sheet-Bulk Metal Forming. Appl Mech Mater 794:81–88CrossRefGoogle Scholar
  4. 4.
    Hetzner H, Koch J, Tremmel S, Wartack S, Merklein M (2011) Improved Sheet Bulk Metal Forming Processes by Local Adjustment of Tribological Properties. J. Manufacturing Science and Engineering 133(6):61011-1-11CrossRefGoogle Scholar
  5. 5.
    Sieczkarek P, Kwiatkowski L, Tekkaya AE, Krebs E, Kersting P, Tillmann W, Herper J (2013) Innovative tools to improve incremental bulk forming processes. Key Eng Mater 554–557:1490–1497CrossRefGoogle Scholar
  6. 6.
    Sieczkarek P, Kwiatkowski L, Tekkaya AE et al (2012) Improved tool surfaces for incremental bulk forming processes of sheet metals. Key Eng Mater 504–506:975–980CrossRefGoogle Scholar
  7. 7.
    Freiburg D, Biermann D, Hense R, Stangier D, Tillmann W (2015) Influence of surface modifications on friction, using high-feed milling and wear resistant PVD-coating for sheet-metal forming tools. Key Eng Mater 639:275–282CrossRefGoogle Scholar
  8. 8.
    Suresh R, Basavarajappa S, Gaitonde VN, Samuel G, Davim JP (2013) State-of-the-art research in machinability of hardened steels. Proc Inst Mech Eng Part B J Eng Manuf 227(2):191–209CrossRefGoogle Scholar
  9. 9.
    Hogmark S, Jacobsen S, Wänstrand O (1999) A new universal test for tribological evaluation. In: Proceedings of the 21st IRG-OECD Meeting, Amsterdam, NetherlandsGoogle Scholar
  10. 10.
    Hetzner H, Schaufler J, Tremmel S, Durst K, Wartzack S (2012) Failure mechanisms of a tungsten-modified hydrogenated amorphous carbon coating in load-scanning tests. Surf Coat Technol 212:46–54CrossRefGoogle Scholar
  11. 11.
    Ahn S-K, Kwon S-H, Kim K-H (2011) Effect of carbon on microstructure of CrAlCxN1-x coatings by hybrid coating system. Trans Nonferrous Met Soc China 21:78–82CrossRefGoogle Scholar
  12. 12.
    Sobis T, Engel U, Geiger M (1994) A theoretical study of wear simulation in metal forming processes. J Mater Process Technol 34:233–240CrossRefGoogle Scholar
  13. 13.
    Pfestorf M, Engel U, Geiger M (1998) 3D-surface parameters and their application on deterministic textured metal sheets. Int J Mach Tools Manuf 38:607–614CrossRefGoogle Scholar
  14. 14.
    Leach R (2013) Characterisation of areal surface texture. Springer, BerlinCrossRefGoogle Scholar
  15. 15.
    Kalker JJ (1990) Three-dimensional elastic bodies in rolling contact, Vol 2. Springer, NetherlandszbMATHGoogle Scholar
  16. 16.
    Hauer F, Willner K (2013) Development of a Friction law respecting plastic surface smoothing. Key Eng Mater 554:1471–1477CrossRefGoogle Scholar
  17. 17.
    Hauer F (2014) Die elasto-plastische Einglättung rauer Oberflächen und ihr Einfluss auf die Reibung in der Umformtechnik. Erlangen, Germany, Friedrich-Alexander-University Erlangen-Nürnberg, Diss. (Schriftenreihe Technische Mechanik, ISSN 2190-023X)Google Scholar
  18. 18.
    Engel U, Neudecker T, Popp U (2000) 3D-Oberflächenanalyse - Methoden, Kenngrößen, Anwendungen. Materialwiss Werkstofftech 31:747–753CrossRefGoogle Scholar
  19. 19.
    Hense R, Kersting P, Vierzigmann U, Löffler M, Biermann D, Merklein M, Wels C (2014) High-feed milling of tailored surfaces for sheet-bulk metal forming tools. Prod Eng Res Devel. doi: 10.1007/s11740-014-0597-0 Google Scholar
  20. 20.
    Male AT, Cockcroft MG (1964) A method for the determination of the coefficient of friction of metals under condition of bulk plastic deformation. J Inst Metal 93:38–46Google Scholar
  21. 21.
    Rajnesh T, Nath SK, Ray S (2002) Effect of martensite content on friction and oxidative wear behavior of 0.42 Pct carbon dual-phase steel. Metall Mater Trans A 33(11):3479–3488CrossRefGoogle Scholar
  22. 22.
    Hetzner H, Zhao R, Tremmel S, Wartzack S (2013) Tribological adjustment of tungsten-modified hydrogenated amorphous carbon coatings by adaption of the deposition parameters. In: Bouzakis MK-D, Bobzin K, Denkena B, Merklein M (eds) 10th international conference THE “A” Coatings. Shaker, Aachen, pp 39–49Google Scholar
  23. 23.
    Vierzigmann U, Merklein M, Engel U (2010) tailored surfaces in sheet-bulk metal forming. In: Felder E, Montmitonnet P (ed) Proceedings of 4th international conference on tribology in manufacturing processes (ICTMP), Transvalor–Presses des MINES, pp 541–550Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2016

Authors and Affiliations

  • Petra Kersting
    • 1
  • Daniel Gröbel
    • 2
  • Marion Merklein
    • 2
  • Peter Sieczkarek
    • 3
  • Sebastian Wernicke
    • 3
  • A. Erman Tekkaya
    • 3
  • Eugen Krebs
    • 1
  • Dennis Freiburg
    • 1
  • Dirk Biermann
    • 1
  • Tim Weikert
    • 4
  • Stephan Tremmel
    • 4
  • Dominic Stangier
    • 5
  • Wolfgang Tillmann
    • 5
  • Steffen Matthias
    • 6
  • Eduard Reithmeier
    • 6
  • Maria Löffler
    • 2
  • Florian Beyer
    • 7
  • Kai Willner
    • 7
  1. 1.Institute of Machining Technology (ISF)TU Dortmund UniversityDortmundGermany
  2. 2.Institute of Manufacturing Technology (LFT)Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  3. 3.Institute of Forming Technology and Lightweight Construction (IUL)TU Dortmund UniversityDortmundGermany
  4. 4.Chair of Engineering Design (KTmfk)Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  5. 5.Institute of Materials Engineering (LWT)TU Dortmund UniversityDortmundGermany
  6. 6.Institute of Measurement and Automatic Control (IMR)Leibniz University HannoverHannoverGermany
  7. 7.Chair of Applied Mechanics (LTM)Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations