Production Engineering

, Volume 9, Issue 4, pp 451–463 | Cite as

Modelling and simulation of Internal Traverse Grinding: bridging meso- and macro-scale simulations

  • Raphael HoltermannEmail author
  • Andreas Menzel
  • Sebastian Schumann
  • Dirk Biermann
  • Tobias Siebrecht
  • Petra Kersting
Computer Aided Engineering


In this work, we focus on the computational bridging between the meso- and macro-scale in the context of the hybrid modelling of Internal Traverse Grinding with electro-plated cBN wheels. This grinding process satisfies the manufacturing industry demands for a high rate of material removal along with a high surface quality while minimising the number of manufacturing processes invoked. To overcome the major problem of the present machining process, namely a highly concentrated thermal load which can result in micro-structural damage and dimension errors of the workpiece, a hybrid simulation framework is currently under development. The latter consists of three components. First, a kinematic simulation that models the grinding wheel surface based on experimentally determined measurements is used to calculate the transient penetration history of every grain intersecting with the workpiece. Secondly, an h-adaptive, plane-strain finite element model incorporating elasto-plastic work hardening, thermal softening and ductile damage is used to simulate the proximity of one cBN grain during grinding and to capture the complex thermo-mechanical material response on a meso-scale. For the third component of the framework, the results from the preceding two simulation steps are combined into a macro-scale process model that shall in the future be used to improve manufacturing accuracy and to develop error compensation strategies accordingly. To achieve this objective, a regression analysis scheme is incorporated to approximate the influence of the several cutting mechanisms on the meso-scale and to transfer the homogenisation-based thermo-mechanical results to the macro-scale.


Grinding 100Cr6(AISI 52100) cBN Finite element method h-Adaptive remeshing 

Mathematics Subject Classification

74F05 74R99 



Financial support by the Deutsche Forschungsgemeinschaft (DFG) in the context of SPP 1480 (Project IDs: ME 1745/7-3; BI 498/23-3) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ahearne E, Byrne G (2008) Simulation of the local kinematics in rotational grinding. CIRP Ann Manuf Technol 57(1):333–336. doi: 10.1016/j.cirp.2008.03.080 CrossRefGoogle Scholar
  2. 2.
    Altintas Y, Kersting P, Biermann D, Budak E, Lazoglu BDI (2014) Virtual process systems for part machining operations. CIRP Ann Manuf Technol 63(2):585–605. doi: 10.1016/j.cirp.2014.05.007 CrossRefGoogle Scholar
  3. 3.
    Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405. doi: 10.1145/116873.116880 CrossRefGoogle Scholar
  4. 4.
    Aurenhammer F, Klein R, Lee DT, Klein R (2013) Voronoi diagrams and delaunay triangulations. World Scientific, SingaporeCrossRefGoogle Scholar
  5. 5.
    Aurich J, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5(3):164–174. doi: 10.1016/j.cirpj.2012.07.004 CrossRefGoogle Scholar
  6. 6.
    Brinksmeier E, Aurich J, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson D, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55(2):667–696. doi: 10.1016/j.cirp.2006.10.003 CrossRefGoogle Scholar
  7. 7.
    Chakrabarti S, Paul S (2008) Numerical modelling of surface topography in superabrasive grinding. Int J Adv Manuf Technol 39(1–2):29–38. doi: 10.1007/s00170-007-1201-y CrossRefGoogle Scholar
  8. 8.
    Foley JD, Feiner S, Hughes JF, Phillips RL (1994) Introduction to computer graphics. Addison-Wesley Longman Publishing Co, BostonzbMATHGoogle Scholar
  9. 9.
    Herzenstiel P, Aurich JC (2010) cBN-grinding wheel with a defined grain pattern—extensice numerical and experimental studies. Mach Sci Technol 14(3):301–322. doi: 10.1080/10910344.2010.511574 CrossRefGoogle Scholar
  10. 10.
    Holtermann R, Schumann D, Menzel A, Biermann D (2014) A hybrid approach to the modelling and simulation of grinding processes. In: Proceedings of 11th World Congress Computational Mechanics (WCCM XI), Ebook, pp 1932–1937Google Scholar
  11. 11.
    Holtermann R, Schumann S, Menzel A, Biermann D (2013) Modelling, simulation and experimental investigation of chip formation in internal traverse grinding. Prod Eng Res Dev 7(2–3):251–263. doi: 10.1007/s11740-013-0449-3 CrossRefGoogle Scholar
  12. 12.
    Hortig C (2011) Local and non-local thermomechanical modeling and finite-element simulation of high-speed cutting. Ph.D. thesis, TU Dortmund, Institute of MechanicsGoogle Scholar
  13. 13.
    Carslaw HS, Jaeger JC (1959) Conduction of Heat in Solids. Oxford University Press, LondonGoogle Scholar
  14. 14.
    Jackson MJ, Davim JP (2011) Machining with abrasives. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  15. 15.
    Johnson G, Cook W (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, vol 1, pp 541–547Google Scholar
  16. 16.
    Joliet R, Kansteiner M (2013) A high resolution surface model for the simulation of honing processes. Adv Mater Res 769:69–76. doi: 10.4028/ CrossRefGoogle Scholar
  17. 17.
    Koshy P, Iwasald A, Elbestawl M (2003) Surface generation with engineered diamond grinding wheels: insights from simulation. CIRP Ann Manuf Technol 52(1):271–274. doi: 10.1016/S0007-8506(07)60582-4 CrossRefGoogle Scholar
  18. 18.
    Kumar S, Paul S (2012) Numerical modelling of ground surface topography: effect of traverse and helical superabrasive grinding with touch dressing. Prod Eng Res Dev 6(2):199–204. doi: 10.1007/s11740-012-0370-1 zbMATHCrossRefGoogle Scholar
  19. 19.
    Liu Y, Warkentin A, Bauer R, Gong Y (2013) Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations. Precis Eng 37(3):758–764. doi: 10.1016/j.precisioneng.2013.02.009 CrossRefGoogle Scholar
  20. 20.
    Marschalkowski K (2010) Beitrag zur Prozessentwicklung für das Hochleistungsinnenrund-Schälschleifen mit galvanisch gebundenen cBN-Schleifscheiben. Ph.D. thesis, TU Dortmund UniversityGoogle Scholar
  21. 21.
    Marschalkowski K, Biermann D, Weinert K (2010) On the characteristics of high-performance internal traverse grinding using electroplated cbn wheels. In: Aoyama T, Takeuchi Y (eds) Proceedings of the 4th CIRP International Conference on High Performance Cutting (CIRP HPC 2010), vol. 1, pp 393–398Google Scholar
  22. 22.
    de Payrebrune K (2013) Analyse und Modellierung der Prozess-Strukturwechselwirkungen beim Werkzeugschleifen. Dissertation, Institut für Maschinenelemente, Konstruktion und Fertigung, TU Bergakademie Freiberg UniversityGoogle Scholar
  23. 23.
    Poulachon G, Moisan A (2001) Performance evaluation on hardened steel-(pcbn) tool pair in high speed turning. In: Schulz H (ed) Scientific fundamentals of HSC. Carl Hanser Verlag, Munich, pp 161–171Google Scholar
  24. 24.
    Rausch S, Odendahl S, Kersting P, Biermann D, Zabel A (2012) Simulation-based prediction of process forces for grinding free-formed surfaces on machining centers. Proc CIRP 4:161–165. doi: 10.1016/j.procir.2012.10.029 CrossRefGoogle Scholar
  25. 25.
    Rausch S, Siebrecht T, Kersting P, Biermann D (2014) Analysis and simulation of surface topographies in grinding of thermally sprayed coatings. Adv Mater Res 1018:91–98. doi: 10.4028/ CrossRefGoogle Scholar
  26. 26.
    Salisbury E, Domala K, Moon K, Miller M, Sutherland J (2001) A three-dimensional model for the surface texture in surface grinding, Part 1: surface generation model. J Manuf Sci Eng Trans ASME 123(4):576–581. doi: 10.1115/1.1391427 CrossRefGoogle Scholar
  27. 27.
    Salisbury E, Domala K, Moon K, Miller M, Sutherland J (2001) A three-dimensional model for the surface texture in surface grinding, Part 2: grinding wheel surface texture model. J Manuf Sci Eng Trans ASME 123(4):582–590. doi: 10.1115/1.1391428 CrossRefGoogle Scholar
  28. 28.
    Schumann S, Holtermann R, Biermann D, Menzel A (2013) Hochleistungs-Innenrundschälschleifen: Thermomechanische Betrachtung in Abhängigkeit vom radialen Gesamtaufmaß. Diam Bus 11(2):36–43Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2015

Authors and Affiliations

  • Raphael Holtermann
    • 1
    Email author
  • Andreas Menzel
    • 1
    • 3
  • Sebastian Schumann
    • 2
  • Dirk Biermann
    • 2
  • Tobias Siebrecht
    • 2
  • Petra Kersting
    • 2
  1. 1.Institute of MechanicsTU DortmundDortmundGermany
  2. 2.Institute of Machining TechnologyTU DortmundDortmundGermany
  3. 3.Division of Solid MechanicsLund UniversityLundSweden

Personalised recommendations