Production Engineering

, Volume 9, Issue 2, pp 225–235 | Cite as

Criticality analysis of spare parts management: a multi-criteria classification regarding a cross-plant central warehouse strategy

  • J. StollEmail author
  • R. Kopf
  • J. Schneider
  • G. Lanza
Production Management


Today an efficient warehouse and inventory management of spare parts for production machinery is essential for service organizations. Optimal strategies in procurement, stocking and supply play an important role for serviceability in spare parts management. In this context, individual item criticality should be considered, which describes how crucial a spare part is. This paper presents a three-dimensional classification approach for spare parts regarding a cross-plant central warehouse strategy of a service network. The approach uses two dimensions to estimate value and predictability of spare parts with aid of an ABC and XYZ analysis. The third dimension VED analyses a multi-criteria criticality classification and six feasible criteria are identified to describe item criticality. The methodology of the analysis is based on a decision tree, which represents the defined criteria by nodes. In addition, the analytic hierarchy process is used to solve the multi-criteria decision problems at the different nodes of the decision tree. The approach is developed in a research project and evaluation of spare parts is performed based on real inventory and transaction data in cooperation with an industrial company. As a result 15,000 out of 50,000 items could be classified as suitable for central warehousing.


Spare parts management Service networks Central warehousing Criticality Multi-criteria classification AHP 



This research work was funded by the DFG within the research project “Evaluation and optimization of the serviceability” (LA 2351/23-1). We thank the DFG for promoting and facilitating the research.


  1. 1.
    Behmann B (2012) Servicefähigkeit: Eine Methode zur Serviceplanung und simulativen Bestimmung der Servicefähigkeit auf Basis des Ausfallverhaltens von Maschinenkomponenten. Shaker Verlag, AachenGoogle Scholar
  2. 2.
    Lanza G, Behmann B (2011) Advanced steps to optimize the serviceability. Advances in production management systems (APMS), 26.09.2011–28.09.2011, Stavanger. Norwegen. Heidelberg, Springer, New YorkGoogle Scholar
  3. 3.
    Biedermann H (2008) Ersatzteilmanagement: Effiziente Ersatzteillogistik für Industrieunternehmen, 2nd edn. Springer, BerlinGoogle Scholar
  4. 4.
    Niggeschmidt S (2010) Ausfallgerechte Ersatzteilbereitstellung im Maschinen- und Anlagenbau mittels lastabhängiger Lebensdauerprognose. Shaker Verlag, AachenGoogle Scholar
  5. 5.
    Oeldorf G, Olfert K (2013) Material-Logistik. Olfert K (ed) Kompendium der praktischen Betriebswirtschaft. 13th edition. NWB Verlag, HemeGoogle Scholar
  6. 6.
    Pawellek G (2013) Integrierte Instandhaltung und Ersatzteillogistik: Vorgehensweisen, Methoden, Tools. Springer, HeidelbergCrossRefGoogle Scholar
  7. 7.
    Braglia M, Grassi A, Montanari R (2004) Multi-attribute classification method for spare parts inventory management. J Qual Maint Eng 10(1):55–65CrossRefGoogle Scholar
  8. 8.
    Syntetos AA, Keyes M, Babai MZ, (2008) Demand categorisation in a European spare parts logistics network. Int J Oper Prod Manag 29(3):292–316. Methoden, Tools. Springer, HeidelbergGoogle Scholar
  9. 9.
    Molenaers A, Baets H, Pintelon L, Waeyenbergh G (2011) Criticality classification of spare parts: a case study. Int J Prod Econ 140:570–578CrossRefGoogle Scholar
  10. 10.
    Matyas K (2013) Instandhaltungslogistik: Qualität und Produktivität steigern, 5th edn. Hanser Verlag, MünchenCrossRefGoogle Scholar
  11. 11.
    Flores BE, Whybark DC (1987) Implementing multiple criteria ABC analysis. J Oper Manag 7(1 and 2):79–85CrossRefGoogle Scholar
  12. 12.
    Chu C-W, Liang G-S, Liao C-T (2008) Controlling inventory by combining ABC analysis and fuzzy classification. Comput Ind Eng 55:841–851CrossRefGoogle Scholar
  13. 13.
    Ramanathan R (2004) ABC inventory classification with multiple-criteria using weighted linear optimization. Comput Oper Res 33:695–700CrossRefGoogle Scholar
  14. 14.
    Partovi FY, Anandarajan M (2001) Classifying inventory using an artificial neural network approach. Comput Ind Eng 41:389–404CrossRefGoogle Scholar
  15. 15.
    Ernst R, Cohen MA (1990) Operations related groups (ORGs): a clustering procedure for production/inventory systems. J Oper Manag 9(4):574–598CrossRefGoogle Scholar
  16. 16.
    De Almeida AT (2000) Multicriteria decision making on maintenance: spares and contracts planning. Eur J Oper Res 129:235–241CrossRefGoogle Scholar
  17. 17.
    Petrović D, Petrović R (1992) SPARTA II: further development in an expert system for advising on stocks of spare parts. Int J Prod Econ 24:291–300CrossRefGoogle Scholar
  18. 18.
    Huiskonen J (2001) Maintenance spare parts logistics: special characteristics and strategic choices. Int J Prod Econ 71:125–133CrossRefGoogle Scholar
  19. 19.
    Paaki J, Huiskonen J, Pirttilä T (2010) Improving global spare parts distribution chain performance through part categorization: a case study. Int J Prod Econ 133:164–171Google Scholar
  20. 20.
    Dekker R, Kleijn MJ, de Rooij PJ (1996) A spare parts stocking policy based on equipment criticality. Int J Prod Econ 56–57:69–77Google Scholar
  21. 21.
    Porras E, Dekker R (2006) An inventory control system for spare parts at a refinery: an empirical comparison of different re-order point methods. Eur J Oper Res 184:101–132CrossRefGoogle Scholar
  22. 22.
    Botter R, Fortuin L (2000) Stocking strategy for service parts—a case study. Int J Oper Prod Manag 20(6):656–674CrossRefGoogle Scholar
  23. 23.
    Bošnjaković M (2010) Multicriteria inventory model for spare parts. Tech Gaz 17(4):499–504Google Scholar
  24. 24.
    Gajpal PP, Ganesh LS, Rajendran C (1994) Criticality analysis of spare parts using the analytic hierarchy process. Int J Prod Econ 35:293–297CrossRefGoogle Scholar
  25. 25.
    Sharaf MA, Helmy HA (2001) A classification model for inventory management of spare parts. In: Proceedings of the 7th international conference on production, industrial engineering, design and control, p 375–82Google Scholar
  26. 26.
    Knut A (2005) Planung und Betrieb von Logistiknetzwerken: Unternehmensübergreifendes supply chain management; mit 27 Tabellen, 2nd edn. Springer Verlag, BerlinGoogle Scholar
  27. 27.
    Bose DC (2006) Inventory management. Prentice-Hall of India Private Limited, New DelhiGoogle Scholar
  28. 28.
    Schawel C, Billing F (2012) Top 100 management tools: Das wichtigste Buch eines Managers: Von ABC-Analyse bis Zielvereinbarung, 4th edn. Springer Gabler Verlag, WiesbadenGoogle Scholar
  29. 29.
    Skinner DC (2001) Introduction to decision analysis: a practitioner’s guide to improving decision quality, 2nd edn. Probabilistic Publishing, GainesvilleGoogle Scholar
  30. 30.
    Harker PT (1989) The art and science of decision making: the analytic hierarchy process. In: Golden BL, Wasil EA, Harker PT (eds) The analytic hierarchy process: applications and studies. Springer, New York, pp 3–36CrossRefGoogle Scholar
  31. 31.
    Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98MathSciNetGoogle Scholar
  32. 32.
    Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26CrossRefzbMATHGoogle Scholar
  33. 33.
    Linkov I, Bakr Ramadian A (2004) Comparative risk assessment and environmental decision making. Kluwer Academic Publishers, DordrechtGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2015

Authors and Affiliations

  1. 1.wbk – Institute of Production ScienceKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations