Production Engineering

, Volume 9, Issue 2, pp 179–186 | Cite as

Predicting thermal loading in NC milling processes

  • Matthias SchweinochEmail author
  • Raffael Joliet
  • Petra Kersting
Production Process


In dry NC milling, a significant amount of heat is introduced into the workpiece due to friction and material deformation in the shear zone. Time-varying contact conditions, relative tool–workpiece movement and continuous geometric change of the workpiece due to material removal lead to a perpetually changing inhomogeneous temperature distribution within the workpiece. This in turn subjects the workpiece to ongoing complex thermomechanical deformations. Machining such a thermally loaded and deformed workpiece to exact specifications may result in unacceptable shape deviations and thermal errors, which become evident only after dissipation of the introduced heat. This paper presents a hybrid simulation system consisting of a geometric multiscale milling simulation and a finite element method kernel for solving problems of linear thermoelasticity. By combination and back-coupling, the described system is capable of accurately modeling heat input, thermal dispersion, transient thermomechanical deformation and resulting thermal errors as they occur in NC milling processes. A prerequisite to accurately predicting thermomechanical errors is the correct simulation of the temperature field within the workpiece during the milling process. Therefore, this paper is subjected to the precise prediction of the transient temperature distribution inside the workpiece.


Milling simulation Geometric modeling Thermal error Deformation Process optimization Finite element method (FEM) 



This paper is based on investigations and findings of the project Simulation of Thermomechanical Deformations in NC Milling of the priority program SPP 1480 (CutSim) which is kindly supported by the German Research Foundation (DFG).


  1. 1.
    Arrazola P, Özel T, Umbrello D, Davies M, Jawahir I (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol. doi: 10.1016/j.cirp.2013.05.006
  2. 2.
    Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2006.05.010
  3. 3.
    Davies M, Ueda T, M’Saoubi R, Mullany B, Cooke A (2007) On the measurement of temperature in material removal processes. CIRP Ann Manuf Technol. doi: 10.1016/j.cirp.2007.10.009
  4. 4.
    Denkena B, Böß V (2009) Technological NC simulation for grinding and cutting processes using cuts. In: Proceedings of the 12th CIRP conference on modeling of machining operationsGoogle Scholar
  5. 5.
    Gulpak M, Sölter J, Brinksmeier E (2013) Prediction of shape deviations in face milling of steel. Procedia CIRP. doi: 10.1016/j.procir.2013.06.058
  6. 6.
    Haupt P (2002) Continuum mechanics and theory of materials. Transl. from German by Joan A. Kurth., 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Heisel U, Storchak M, Krivoruchko D (2013) Thermal effects in orthogonal cutting. Prod Eng. doi: 10.1007/s11740-013-0451-9
  8. 8.
    Hetnarski RB, Ignaczak J (2000) Nonclassical dynamical thermoelasticity. Int J Solids Struct 37(1–2):215–224Google Scholar
  9. 9.
    Joliet R, Byfut A, Kersting P, Schröder A, Zabel A (2013) Validation of a heat input model for the prediction of thermomechanical deformations during NC milling. In: 14th CIRP conference on modeling of machining operations (CIRP CMMO). doi: 10.1016/j.procir.2013.06.124
  10. 10.
    Joliet R, Byfut A, Surmann T, Schröder A (2013) Incremental generation of hierarchical meshes for the thermomechanical simulation of NC-milling processes. In: Eighth CIRP conference on intelligent computation in manufacturing engineering. doi: 10.1016/j.procir.2013.09.006
  11. 11.
    Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z 94Google Scholar
  12. 12.
    Odendahl S, Joliet R, Ungemach E, Zabel A, Kersting P, Biermann D (2014) Simulation of the NC milling process for the prediction and prevention of chatter. In: Denkena B (ed) New production technologies in aerospace industry, lecture notes in production engineering. Springer International Publishing, pp 19–25. doi: 10.1007/978-3-319-01964-2_3
  13. 13.
    Odendahl S, Kersting P (2013) Higher efficiency modeling of surface location errors by using a multi-scale milling simulation. Procedia CIRP. doi: 10.1016/j.procir.2013.06.161
  14. 14.
    Rai JK, Xirouchakis P (2008) FEM-based prediction of workpiece transient temperature distribution and deformations during milling. Int J Adv Manuf Technol. doi: 10.1007/s00170-008-1610-6
  15. 15.
    Ratchev S, Nikov S, Moualek I (2004) Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA. Adv Eng Softw. doi: 10.1016/j.advengsoft.2004.06.011
  16. 16.
    Rehling S (2009) Technologische Erweiterung der Simulation von NC-Fertigungsprozessen, Berichte aus dem IFW, Band 01/2009. PZH Produktionstechnisches Zentrum GmbHGoogle Scholar
  17. 17.
    Schmidt A, Roubik J (1949) Distribution of heat generated in drilling. Trans ASME 71:245–252Google Scholar
  18. 18.
    Smolenicki D, Boos J, Kuster F, Wegener K (2012) Analysis of the chip formation of bainitic steel in drilling processes. In: Fifth CIRP conference on high performance cutting 2012. doi: 10.1016/j.procir.2012.05.027
  19. 19.
    Surmann T, Ungemach E, Zabel A, Joliet R, Schröder A (2011) Simulation of the temperature distribution in NC-milled workpieces. Adv Mater Res 223:222–230. doi: 10.4028/ CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • Matthias Schweinoch
    • 1
    Email author
  • Raffael Joliet
    • 1
  • Petra Kersting
    • 1
  1. 1.Institute of Machining TechnologyTU Dortmund UniversityDortmundGermany

Personalised recommendations