Advertisement

Production Engineering

, Volume 9, Issue 2, pp 215–223 | Cite as

High-feed milling of tailored surfaces for sheet-bulk metal forming tools

  • Rouven HenseEmail author
  • Christoph Wels
  • Petra Kersting
  • Ulrich Vierzigmann
  • Maria Löffler
  • Dirk Biermann
  • Marion Merklein
Tooling

Abstract

The increasingly investigated and applied production process sheet-bulk metal forming (SBMF) has novel requirements for the forming tools, e.g., the need of an adaptive material flow at different areas of the tool for an adequate form filling. One new method to realize different, defined tribological conditions are tailored surfaces (TS). During the design of forming tools, it is imperative to have profound knowledge about the tribology between the tool and the workpiece. This article introduces structuring with high-feed milling tools as one possibility for influencing the material flow during forming processes and presents a ring-compression test for the quantification of the tribological conditions, which is adapted for SBMF. On the basis of various machined structures, surface parameters are analyzed to identify a correlation with the friction coefficient to gain knowledge about the mechanisms of TS and to be able to choose structures according to the needs of SBMF processes.

Keywords

Sheet-bulk metal forming Tribology High-feed milling 

Notes

Acknowledgments

This work is based on investigations of the Transregional Collaborative Research Center SFB/TR 73 (sub-projects B3 and C1) which is kindly funded by the German Research Foundation (DFG).

References

  1. 1.
    Berglund J, Brown C, Rosén BG, Bay N (2010) Milled die steel surface roughness correlation with steel sheet friction. CIRP Ann Manuf Technol 59(1):577–580CrossRefGoogle Scholar
  2. 2.
    Biermann D, Kersting P, Surmann T (2010) A general approach to simulating workpiece vibrations during five-axis milling of turbine blades. CIRP Ann Manuf Technol 59(1):125–128CrossRefGoogle Scholar
  3. 3.
    Denkena B, Böß V, Nespor D, Samp A (2011) Kinematic and stochastic surface topography of machined TiAl6V4-Parts by means of ball nose end milling. Procedia Eng 19:81–87, 1st CIRP conference on surface integrity (CSI)Google Scholar
  4. 4.
    Doege E, Behrens BA (2006) Handbuch Umformtechnik. Springer, BerlinGoogle Scholar
  5. 5.
    Hense R (2013) Using chatter vibrations in milling to create tribo-functional surfaces for sheet-bulk metal forming tools. Adv Mater Res 769:263–270CrossRefGoogle Scholar
  6. 6.
    Hetzner H, Koch J, Tremmel S, Wartzack S, Merklein M (2011) Improved sheet bulk metal forming processes by local adjustment of tribological properties. ASME J Manuf Sci Eng 133(6):1–11CrossRefGoogle Scholar
  7. 7.
    Male A, Cockcroft M (1964/1965) A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J Inst Metals 93:38–46Google Scholar
  8. 8.
    Merklein M, Allwood JM, Behrens BA, Brosius A, Hagenah H, Kuzman K, Mori K, Tekkaya AE, Weckenmann A (2012) Bulk forming of sheet metal. CIRP Ann Manuf Technol 61:725–745CrossRefGoogle Scholar
  9. 9.
    Oyachi Y, Allwood J (2011) Characterizing the class of local metal sheet thickening processes. In: Steel research international—special edition: 10th international conference on technology in plasticity, pp 1036–1041Google Scholar
  10. 10.
    Ryua SH, Choib DK, Chu CN (2006) Roughness and texture generation on end milled surfaces. Int J Mach Tools Manuf 46(3–4):404–412CrossRefGoogle Scholar
  11. 11.
    Schubert A, Gross S, Edelmann J, Schulz B (2010) Laser micro structuring of high-stressed embossing dies. Phys Procedia 5 Part A:261–268. doi: 10.1016/j.phpro.2010.08.145
  12. 12.
    Sieczkarek P, Kwiatkowski L, Tekkaya AE, Krebs E, Kersting P, Tillmann W, Herper J (2013) Innovative tools to improve incremental bulk forming processes. Key Eng Mater 554–557:1490–1497CrossRefGoogle Scholar
  13. 13.
    Staeves J (1998) Beurteilung der Topografie von Blechen im Hinblick auf die Reibung bei der Umformung, Berichte aus Produktion und Umformtechnik, vol. Bd. 41, als ms. gedr edn. Shaker, Aachen.Google Scholar
  14. 14.
    Tekkaya AE (2005) A guide for validations of finite-element simulations in bulk metal forming. Arab J Sci Eng 30:113–136Google Scholar
  15. 15.
    Vierzigmann H, Merklein M, Engel U (2010) Tailored surfaces in sheet-bulk metal forming. In: Montmitonnet P (ed) Proceedings of the 4th international conference on tribology in manufacturing processes (ICTMP), Nice, France, pp 541–550Google Scholar
  16. 16.
    Vierzigmann U, Koch J, Merklein M, Engel U (2012) Material flow in sheet-bulk metal forming. Key Eng Mater 504–506:1035–1040CrossRefGoogle Scholar
  17. 17.
    Vierzigmann U, Schneider T, Koch J, Gröbel D, Merklein M, Engel U, Hense R, Biermann D, Krebs P, Kersting P, Henning L, Denkena B, Herper J, Tillmann W (2013) Untersuchungen von Tailored Surfaces für die Blechmassivumformung mittels angepasstem Ringstauchversuch. In: Merklein M, Behrens BA, Tekkaya AE (eds) 2. Workshop Blechmassivumformung. Meisenbach, Erlangen, pp 137–162Google Scholar
  18. 18.
    Zabel A, Surmann T, Peuker A (2008) Surface structuring and tool path planning for efficient milling of dies. In: 7th international conference on high speed machining proceedings, Bamberg, pp 155–160Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • Rouven Hense
    • 1
    Email author
  • Christoph Wels
    • 1
  • Petra Kersting
    • 1
  • Ulrich Vierzigmann
    • 2
  • Maria Löffler
    • 2
  • Dirk Biermann
    • 1
  • Marion Merklein
    • 2
  1. 1.Institute of Machining TechnologyTU Dortmund UniversityDortmundGermany
  2. 2.Institute of Manufacturing TechnologyFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations