Production Engineering

, Volume 8, Issue 6, pp 711–717 | Cite as

My new colleague has artificial muscles: a DEA based approach for inherently compliant robotic systems

  • In Seong YooEmail author
  • Maximilian Landgraf
  • Christina Ramer
  • Sebastian Reitelshöfer
  • Christian Ziegler
  • Jörg Franke
Production Process


When robots and human workers team up, safety should be ensured at all times. In order to improve safety of human–robot collaboration in hybrid manufacturing processes, many different types of compliant robotic drives, serial elastic actuators for instance, have been developed to date. However, most of them still consist of rigid mechanical components in combination with prevailing servo motor and thus bring several disadvantages such as poor power-to-weight ratio. This paper presents our solution approach for realization of biomimetic, inherently compliant artificial muscles based on dielectric elastomer actuators (DEAs). The artificial muscles based on DEAs distinguish themselves from conventional actuators through their favorable characteristics. They (a) work noiseless, (b) feature specific energy density comparable to human skeletal muscles and (c) are capable of storing or even recovering energy, and finally, (d) can adjust their geometry to meet with undefined and unstructured objects or environments. With remaining challenges overcome, the DEAs are expected to provide a significant contribution to safety of industrial robots collaborating with human workers.


Electroactive polymers Dielectric elastomer actuators  Artificial muscles Compliant actuators Human–robot collaboration Safe robotic systems 



The fundamental research on artificial muscles presented in this paper has received funding from the Bavarian Environment Agency within the framework of the biomimetic research initiative “Bionicum Forschung”. The authors gratefully acknowledge this financial support.


  1. 1.
    European Commission (2013) Symbiotic human–robot collaborations for safe and dynamic multimodal manufacturing systems. Horizon 2020 work programme 2014–2015 Part 5. ii, pp 76–77Google Scholar
  2. 2.
    Hedelind M, Kock S (2011) Requirements on flexible robot systems for small parts assembly: a case study. IEEE Int Symp Assem Manuf 2011:1–7Google Scholar
  3. 3.
    Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann Manuf Technol 58(2):628–646CrossRefGoogle Scholar
  4. 4.
    Ramer C, Reitelshöfer S, Franke J (2013) Automatisierte Pfadgenerierung und Kollisionsüberwachung für Sechsachs-Industrieroboter durch 3D-kameragestützte Umgebungserfassung. Der 14. Branchentreff der Mess- und Automatisierungstechnik (AUTOMATION 2013)Google Scholar
  5. 5.
    Matthias B, Oberer-Treitz S, Staab H, Schuller E, Peldschus S (2010) Injury risk quantification for industrial robots in collaborative operation with humans. In: 41st international symposium on robotics and 6th German conference on robotics 2010, pp 1–6Google Scholar
  6. 6.
    Albu-Schäffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimbock T, Wolf S, Hirzinger G (2008) Soft robotics. IEEE Robot Autom Mag 15(3):20–30CrossRefGoogle Scholar
  7. 7.
    Ham R, Sugar T, Vanderborght B, Hollander K, Lefeber D (2009) Compliant actuator designs: review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot Autom Mag 16(3):81–94CrossRefGoogle Scholar
  8. 8.
    Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31(1):10–36CrossRefGoogle Scholar
  9. 9.
    Zhao X, Suo Z (2008) Electrostriction in elastic dielectrics undergoing large deformation. J Appl Phys 104(12):123530CrossRefGoogle Scholar
  10. 10.
    O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104(7):71101CrossRefGoogle Scholar
  11. 11.
    Kornbluh RD, Pelrine R, Pei Q, Oh S, Joseph J, Bar-Cohen Y (2000) Ultrahigh strain response of field-actuated elastomeric polymers. In: 7th annual international symposium on smart structures and materials (Proceedings of SPIE 3987), pp 51–64Google Scholar
  12. 12.
    Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q, Chiba S (2000) High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng C 11(2):89–100CrossRefGoogle Scholar
  13. 13.
    Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R (2013) 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater 2013:1–13Google Scholar
  14. 14.
    Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J (2013) Electroactive polymers: developments of and perspectives for dielectric elastomers. Angew Chem Int Ed 52(36):9409–9421CrossRefGoogle Scholar
  15. 15.
    Lotz P (2009) Dielektrische Elastomerstapelaktoren für ein peristaltisches Fluidfördersystem. Disserataion, Technische Universität DarmstadtGoogle Scholar
  16. 16.
    Lotz P, Matysek M, Schlaak HF (2011) Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE ASME Trans Mechatron 16(1):58–66CrossRefGoogle Scholar
  17. 17.
    Franke J (ed) (2013) Räumliche elektronische Baugruppen (3D-MID): Werkstoffe, Herstellung. Montage und Anwendungen für spritzgegossene Schaltungsträger. Carl Hanser Verlag, München, pp 78–81Google Scholar
  18. 18.
    Landgraf M, Reitelshöfer S, Franke J, Hedges M (2013) Aerosol Jet Printing and lightweight power electronics for dielectric elastomer actuators. In: 3rd international electric drives production conference (E|DPC 2013), pp 170–176Google Scholar
  19. 19.
    Claussen KU, Giesa R, Schmidt HW (2014) Longitudinal polymer gradient materials based on crosslinked polymers. Polymer 55(2014):29–38CrossRefGoogle Scholar
  20. 20.
    Carta R, Jourand P, Hermans B, Thoné J, Brosteaux D, Vervust T, Bossuyt F, Axisa F, Vanfleteren J, Puers R (2009) Design and implementation of advanced systems in a flexible–stretchable technology for biomedical applications. Sens Actuators A 156(2009):79–87CrossRefGoogle Scholar
  21. 21.
    Jager EWH, Masurkar N, Nworah NF, Gaihre B, Alici G, Spinks GM (2013) Patterning and electrical interfacing of individually controllable conducting polymer microactuators. Sens Actuators B 183(2013):283–289CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • In Seong Yoo
    • 1
    Email author
  • Maximilian Landgraf
    • 1
  • Christina Ramer
    • 1
  • Sebastian Reitelshöfer
    • 1
  • Christian Ziegler
    • 1
  • Jörg Franke
    • 1
  1. 1.Institute for Factory Automation and Production Systems (FAPS)Friedrich-Alexander University of Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations