Production Engineering

, Volume 8, Issue 5, pp 645–658 | Cite as

Deposition welding of hot forging dies using nanoparticle reinforced weld metal

  • Bernd-Arno Behrens
  • Timur YilkiranEmail author
  • Sörn Ocylok
  • Andreas Weisheit
  • Ingomar Kelbassa


In the application field of forging, the form-giving tool components are subject to process-related severe environmental conditions, such as high mechanical loads acting simultaneously with high tribological and thermal charges. Due to high machine hour rates as well as increasing environmental requirements in terms of energy consumption, wear protection methods and suitable repair measures for forging tools become more and more important. Laser deposition welding represents an established process for the repair of complex shaped surfaces. A new approach is the addition of nano-sized ceramic particles to improve the mechanical properties. The main idea is to reduce the grain size of the cladded layers by adding nano-sized nuclei. A fine grained microstructure will improve strength as well as ductility and fatigue resistance. Furthermore small hard particles can improve the wear resistance without affecting the friction of the surface. After the cladding process the surface has to be finished usually by turning, milling and grinding operations. Within the presented paper the potential of nanoparticle-reinforced deposition welding with regard to increasing the wear resistance of forging dies will be examined. First, the process of nanoparticle-reinforced deposition welding will be presented. Afterwards it will be shown that yttrium oxide, titanium carbide and tungsten carbide nanoparticles in an AISI H10 matrix material will influence the friction coefficient between forging tool and material as well as the wear properties.


Hot forging Wear resistance Nanoparticle Laser deposition welding 



The authors wish to thank the Federal Ministry of Education and Research (BMBF) and the PTJ. Furthermore, we would like to thank our industrial partners Hebar Gesenkschmiede GmbH and Laserline GmbH for the professional assistance provided.


  1. 1.
    Paschke H, Weber M, Braeuer G, Yilkiran T, Behrens B-A, Brand H (2012) Optimized plasma nitriding processes for efficient wear reduction of forging dies. Arch Civil Mech Eng 12:407-412. doi: 10.1016/j.acme2012.06.001
  2. 2.
    Sjjöström J, Bergström J (2005) Thermal fatigue in hot working tools. Scand J Metall 34:221–231CrossRefGoogle Scholar
  3. 3.
    Doege E, Behrens B-A (2010) Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen, Springer, Berlin, ISBN: 3540234411Google Scholar
  4. 4.
    Kim TH, Kim BM, Choi JC (2005) Prediction of die abrasive wear in the wire drawing process. J Mater Proc Technol 65:11–17CrossRefGoogle Scholar
  5. 5.
    Altan T (1988) Hammers and presses for forging, metals handbook 9th ed. V.14—forming and forging. ASM International, New York, pp 25–71Google Scholar
  6. 6.
    Bobke T (1991) Randschichtphänomene bei Verschleißvorgängen von Umformwerkzeugen, Fortschritts-Berichte VDI: Reihe 5, Grund- und Werkstoffe, Nr. 237, Dissertation, Universität HannoverGoogle Scholar
  7. 7.
    Saiki H, Marumo Y, Minami A, Sonoi T (2001) Effect of the surface structure on the resistance to plastic deformation of a hot forging tool. J Mater Process Technol 113:22–27CrossRefGoogle Scholar
  8. 8.
    Yilkiran T, Behrens B-A, Paschke H, Weber M, Brand H (2012) The potential of plasma deposition techniques in the application field of forging processes. Arch Civil Mech Eng 12:284-291. doi: 10.1016/j.acme2012.06.002
  9. 9.
    Behrens B-A, Yilkiran T, Paschke H, Weber M (2012) Wear reduction at hot forging dies with duplex processes using plasma nitriding and plasma deposition techniques. In: Seliger G, Kilic E (Eds) Proceedings of the 10th global conference on sustainable manufacturing, Istanbul, Turkey, 31st October–02nd November, pp. 98–103Google Scholar
  10. 10.
    Behrens B-A, Yilkiran T, Brauer G, Paschke H, Weber M Potential of duplex plasma deposition processes for the improvement of wear resistance of hot forging dies. Key Eng Mater, pp 554–557. doi:10.4028/ Google Scholar
  11. 11.
    Behrens B-A, Braeuer G, Paschke H, Bistron M (2011) Reduction of wear at hot forging dies by using coating systems containing boron. Prod Eng Res Dev. doi: 10.1007/s11740-011-0308-z
  12. 12.
    Kashani H, Amadeh A, Ghasemi HM (2006) Room and high temperature wear behaviors of nickel and cobalt based overlay coatings on hot forging dies. Elsevier B.V., Amsterdam. doi: 10.1016/j.wear.2006.08.028
  13. 13.
    He Y, Apachitei I, Zhou J, Walstock T, Duszczyk J (2006) Effect of prior plasma nitriding applied to a hot-work tool steel on the scratch-resistant properties of PACVD TiBN and TiCN coating. Surf Coat Technol 201:2534–2539CrossRefGoogle Scholar
  14. 14.
    Lewis DB, Creasey S, Zhou Z, Forsyth JJ, Ehiasarian AP, Hovsepian PE, Luo Q, Rainforth WM, Münz WD (2004) The effect of (Ti + Al): v ratio on structure and oxidation behavior of TiAlN/VN nano-scale multilayer coatings. Surf Coat Technol 177–178:252–259CrossRefGoogle Scholar
  15. 15.
    Mitterer C, Holler F, Reitberger D, Badisch E, Stoiber M, Lugmair C, Noebauer R, Mueller Th, Kullmer R (2003) Industrial applications of PACVD hardcoatings. Surf Coat Technol 163–164:716–722CrossRefGoogle Scholar
  16. 16.
    Bistron M, Behrens B-A, Bach Fr-W, Möhwald K, Deißer T (2010) Reduction of wear by using boron containing thin coatings at forging of helical gears. In: Proceedings of the 16th international symposium on plasticity: “Finite plasticity and visco-plasticity of conventional and emerging materials”, pp 187–189. ISBN:0-9659463-2-0Google Scholar
  17. 17.
    Weber M (2005) Neue Schichtsysteme für die Umformtechnik—Werkzeug-beschichtungen für die temperierte Umformung. Beschichtete Werkzeuge—höhere Wirtschaftlichkeit in der Ur- und Umformtechnik, Workshop EFDS, DresdenGoogle Scholar
  18. 18.
    Industrielle Gemeinschaftsforschung 16587 N: Nitrierte Werkzeugrandzustände für Schmiedegesenke—Anpassung an das Beanspruchungsprofil des Schmiedeprozesses, Stiftung IWT Bremen, 2010Google Scholar
  19. 19.
    Klümper-Westkamp H (2009) Optimierung der Randschichtzusammensetzung durch Nitrieren von Werkzeugen der Warmmassivumformung zur Steigerung der Lebensdauer, Studie, Industrieverband MassivumformungGoogle Scholar
  20. 20.
    Schulz MH (1988) Beitrag zur Standmengenerhöhung von Schmiedegesenken durch schweißtechnische Maßnahmen, Dissertation, Universität BraunschweigGoogle Scholar
  21. 21.
    Haverkamp H, Bach Fr-W, Anemüller U, Peters K, Irtel B (1992) Verschleißuntersuchungen an Auftragschweißlegierungen für Schmiede-werkzeuge, Stahl und Eisen 112, Nr. 12, pp 111–116Google Scholar
  22. 22.
    Autorenkollektiv: Arbeits- und Ergebnisbericht des Sonderforschungsbereiches 300, „Werkzeuge und Werkzeugsysteme der Metallverarbeitung“, 1993–1995, Universität HannoverGoogle Scholar
  23. 23.
    Gasser A (2003) Wissenbach, K.: Laserstrahl-Auftragschweißen im Werkzeug- und Formenbau; Forschungsgemeinschaft Werkzeuge und Werkstoffe, 13. WerkzeugseminarGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • Bernd-Arno Behrens
    • 1
  • Timur Yilkiran
    • 1
    Email author
  • Sörn Ocylok
    • 2
  • Andreas Weisheit
    • 2
  • Ingomar Kelbassa
    • 3
  1. 1.Institute of Forming Technology and Machines (IFUM)Leibniz Universitaet HannoverGarbsenGermany
  2. 2.Fraunhofer Institute for Laser Technology (ILT)AachenGermany
  3. 3.Chair for Laser Technology (LLT)RWTH AachenAachenGermany

Personalised recommendations