Advertisement

Production Engineering

, Volume 8, Issue 4, pp 461–468 | Cite as

Optimized density profiles for powder metallurgical gears

  • E. Gräser
  • M. Hajeck
  • A. Bezold
  • C. Broeckmann
  • M. Brumm
  • F. Klocke
Production Process

Abstract

In gear production, resource efficiency considering material, energy and time can be achieved using a powder metallurgical process chain. Furthermore, powder metallurgical gears have a lower weight, which will improve the fuel efficiency of a gear box as well. Currently powder metallurgical gears are not used in series-production automobile gear boxes. The main reason for this is a lower expected tooth root fatigue strength, which can be increased using surface densification by rolling. The investigation of how the powder metallurgical (PM) gear manufacturing has to improve in order to gain the possible resource efficiency, is funded in the Priority Program "Resource efficient machine elements”. This paper considers a two-step approach to increase the tooth root fatigue strength of PM gears. The first step is to calculate the fatigue strength considering the density profile of the gear. This first step will result in a description of the optimal density profile. The second step is an investigation of how the density profile and the manufacturing properties can be influenced using different process designs. This step will result in a guideline to change the density profile to the one described in the first step. The combined knowledge of which density profile is necessary and how it can be achieved will give the chance to increase the tooth root fatigue strength of powder metallurgical gears. This paper considers the first part of both steps of the approach.

Keywords

Gears Rolling Powder metallurgy Fatigue Size effect 

Notes

Acknowledgments

This work is funded as the project “High-strength gears by powder metallurgical manufacturing processes” which is part of the Priority Program “Resource efficient machine elements” (SPP 1551) by the German Research Foundation (DFG). We thank GKN Sinter Metals for sintering and the institute “Werkstoffsynthese und Herstellungsverfahren (IEK-1)” of Forschungszentrum Jülich for hot isostatic pressing the fatigue specimen.

References

  1. 1.
    Behrens BA, Gastan E, Vahed N, Lange F (2010) Numerical analysis of the process chain for the production of PM components with integrated information storage. Prod Eng 4(5):477–482CrossRefGoogle Scholar
  2. 2.
    Beiss P (2003) Mechanische Eigenschaften von SinterstählenGoogle Scholar
  3. 3.
    Beiss P (2013) Pulvermetallurgische Fertigungstechnik. Springer ViewegGoogle Scholar
  4. 4.
    Beiss P, Zafari ALKBJ (2012) Fatigue behavior of a sintered steel containing 4 % Ni, 1.5 % Cu, 0.5 % Mo and 0.6 % C. Int J Powder Metal 48:19–34Google Scholar
  5. 5.
    DIN (1987) Begriffe und Bestimmungsgrößen für Stirnräder (Zylinderräder) und Stirnradpaare (Zylinderradpaare) mit EvolventenverzahnungGoogle Scholar
  6. 6.
    Doege E, Behrens BA (2007) Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen; mit 55 Tabellen. Springer, BerlinGoogle Scholar
  7. 7.
    Felten K (2008) Verzahntechnik: Das aktuelle Grundwissen über Herstellung und Prüfung von Zahnrädern, 2nd edn. Expert-Verl, RenningenGoogle Scholar
  8. 8.
    Fereshteh-Saniee F, Pillinger I, Hartley P (2004) Friction modelling for the physical simulation of the bulk metal forming processesGoogle Scholar
  9. 9.
    Kauffmann P (2013) Walzen pulvermetallurgisch hergestellter Zahnräder. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule, AachenGoogle Scholar
  10. 10.
    Klocke F, König W (2005) Fertigungsverfahren: Umformen. Springer, BerlinGoogle Scholar
  11. 11.
    Klocke F, Gorgels C, Gräser E (2011) Study of tool design for surface densification of PM GearsGoogle Scholar
  12. 12.
    Kotthoff G (2003) Neue Verfahren zur Tragfähigkeitssteigerung von gesinterten Zahnrädern. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule, AachenGoogle Scholar
  13. 13.
    Neumaier T (2003) Zur Optimierung der Verfahrensauswahl von Kalt-, Halbwarm- und Warmmassivumformverfahren. Ph.D. thesis, Universität, HannoverGoogle Scholar
  14. 14.
    Neugebauer R, Klug D, Hellfritzsch U (2007) Description of the interactions during gear rolling as a basis for a method for the prognosis of the attainable quality parametersGoogle Scholar
  15. 15.
    Strehl R (1997) Tragfähigkeit von Zahnrädern aus hochfestem Sinterstählen. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule, AachenGoogle Scholar
  16. 16.
    Strehl R (2012) Wirtschaftlichkeit von P/M-Verzahnungen. In Tagungsband zu: Aktuelle Entwicklungen beim Vorverzahnen 2012Google Scholar
  17. 17.
    Tiedemann I, Hirt G, Kopp R, Michl D, Khanjari N (2007) Material flow determination for radial flexible profile ring rolling. Prod Eng 1(3):227–232CrossRefGoogle Scholar
  18. 18.
    Wimmer AJ (2006) Lastverluste von Stirnradverzahnungen: Konstruktive Einflüsse, Wirkungsgradmaximierung, Tribologie, FZG / FZG, Lehrstuhl für Maschinenelemente, Forschungsstelle für Zahnräder und Getriebebau, vol 152. Shaker, AachenGoogle Scholar
  19. 19.
    Zafari A, Beiss PBCLK (2011) Assessing the fatigue strength of a sintered steel as affected by the highly stressed volume. pp 15–20. EPMA, ShrewsburyGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • E. Gräser
    • 1
  • M. Hajeck
    • 2
  • A. Bezold
    • 2
  • C. Broeckmann
    • 2
  • M. Brumm
    • 1
  • F. Klocke
    • 1
  1. 1.Laboratory of Machine Tools and Production EngineeringRWTH AachenAachenGermany
  2. 2.Institute for Materials Applications in Mechanical EngineeringRWTH AachenAachenGermany

Personalised recommendations