Advertisement

Production Engineering

, Volume 8, Issue 3, pp 335–343 | Cite as

Thixoforging of particle-reinforced steel materials

  • Bernd-Arno Behrens
  • Conrad FrischkornEmail author
Production Process

Abstract

The paper deals with a new process chain consisting of powder metallurgy (PM) and a subsequent thixoforging process. This innovative production process can increase the complexity of PM components and enable a high formability of brittle materials such as metal matrix composites (MMC). Compared to conventional materials MMCs feature improved mechanical properties and thus a high potential for various applications. In this investigation cylindrical raw parts, consisting of a steel powder and different proportions of titanium carbide particles, were produced by uniaxial powder pressing and sintering. Subsequently, the samples were heated up to the thixotropic (semi-solid) temperature range and valve parts were thixoforged by a backwards rod extrusion process. Finally, the particle-reinforced steel parts were characterised by metallographic analysis and hardness measurements.

Keywords

Thixoforging Powder metallurgy (PM) Particle-reinforced steel materials Metal matrix composite (MMC) 

Notes

Acknowledgments

The presented results are based on the framework of the research project “Production of complex geometries of particle reinforced steel materials by powder compaction followed by thixoforging”. The authors would like to thank the German Research Foundation (DFG) for the financial support and Quebec Metal Powders Limited (Rio Tinto) for cooperating and providing the steel powder.

References

  1. 1.
    Schatt W (2007) Pulvermetallurgie: Technologien und Werkstoffe, 2. bearbeitete und erweiterte Auflage. Springer, BerlinGoogle Scholar
  2. 2.
    Esper FJ (1996) Pulvermetallurgie. Renningen, Expert VerlagGoogle Scholar
  3. 3.
    Koether R, Rau W (2008) Fertigungstechnik für Wirtschaftsingenieure, 3. aktualisierte Auflage. Carl Hanser, MunichGoogle Scholar
  4. 4.
    Saltykova A (2010) Verschleißbeständige in situ MMC durch Sintern in flüssiger Phase. Dissertation, Ruhr-Universität BochumGoogle Scholar
  5. 5.
    Beffort O (2002) Internationales IWF-Kolloquium 18/19 April 2002, Egerkingen, SchweizGoogle Scholar
  6. 6.
    Bao CG, Wang EZ, Gao YM, Xing JD (2005) Effect of volume fraction of particle on wear resistance of Al2O3/steel composites at elevated temperature. J Iron Steel Res Int 12(2):60–63Google Scholar
  7. 7.
    Patankar SN, Tan MJ (2000) Role of reinforcement in sintering of SiC/316L stainless steel composite. Powder Metall 43(4):350–352CrossRefGoogle Scholar
  8. 8.
    Parashivamurthy KI, Kumar RK, Seetharamu S, Chandrasekharaiah MN (2001) Review on TiC reinforced steel composites. J Mater Sci 36(18):4519–4530CrossRefGoogle Scholar
  9. 9.
    Baxter D, Tarrant A, Valle R (2004) Development of particalute reinforced stainless steel composites. PM, powder metallurgy world congress, 2004, Euro PM, European Congress and Exhibition on Powder Metallurgy, pp 307–313Google Scholar
  10. 10.
    Fritz A, Schulze G (2008) Fertigungstechnik, 8. neu bearbeitet auflage. Springer, BerlinGoogle Scholar
  11. 11.
    Doege E, Behrens B-A (2010) Handbuch Umformtechnik: Grundlagen, Technologien, 2. bearb. Auflage. Springer, BerlinGoogle Scholar
  12. 12.
    Haller B (2006) Einfluss der Prozessparameter beim Thixoschmieden des Stahls C60. Dissertation, Leibniz Universität HannoverGoogle Scholar
  13. 13.
    Fischer D (2008) Entwicklung eines vollautomatisierten Produktionsprozesses für die Herstellung von Stahlbauteilen durch Thixoschmieden. Dissertation, Leibniz Universität HannoverGoogle Scholar
  14. 14.
    Abdelfattah S (2002) Thixoschmieden im geschlossenen Gesenk zur Herstellung komplexer Stahlbauteile. Dissertation, Leibniz Universität HannoverGoogle Scholar
  15. 15.
    Lecomte-Beckers J, Rassili A, Carton M, Robelet M, Koeune R (2007) Study of the liquid fraction and thermophysical properties of semi-solid steels and application to the simulation of inductive heating for thixoforming. In: Advanced Methods in Material Forming, Springer, Berlin, pp 321–347Google Scholar
  16. 16.
    Hemminger WF, Cammenga HK (1989) Methoden der thermischen Analyse. Springer, BerlinGoogle Scholar
  17. 17.
    Schwarz S (2011) Dispersionverstärkte Sinterstähle hergestellt über Field Assisted Sintering, Schriftenreihe des Instituts für Keramik im Maschinenbau, IKM 58. Dissertation, KIT, KarlsruheGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  1. 1.Institute of Forming Technology and Machines (IFUM)Leibniz Universität HannoverGarbsenGermany

Personalised recommendations