Advertisement

Production Engineering

, Volume 8, Issue 3, pp 383–395 | Cite as

Scenario-based determination of product feature uncertainties for robust product architectures

  • Günther Schuh
  • Wolfgang Schultze
  • Michael SchifferEmail author
  • Annette Rieger
  • Stefan Rudolf
  • Heiko Lehbrink
Production Management

Abstract

Modular product architectures are used by many firms today to achieve a high degree of product differentiation whilst reducing cost through economies of scale. At the same time, the firms are increasing architecture lifetimes to 10 years or more, which brings up new challenges for the development process. Uncertainties regarding future product features need to be anticipated when designing the architecture to minimize modification efforts. Nevertheless, existing approaches for designing modular product architectures are mainly based on static requirements and thereby neglect the dynamics of the market that influence future product features. This paper aims at presenting a method utilizing scenario-planning and simulations in the product range planning process to determine future product features and their uncertainties as a basis for the product architecture design. Possible feature specifications are derived from product environment scenarios and linked to the factors influencing the scenarios, to calculate their expected values and deviations.

Keywords

Product range planning Scenario planning Simulation Platform development Product architecture design 

Notes

Acknowledgments

The presented results have been developed within the research project “Scenario-based development of robust product architectures” funded by the Deutsche Forschungsgemeinschaft (DFG).

References

  1. 1.
    Schuh G, Bender D (2012) Grundlagen des Innovationsmanagements. In: Schuh G (ed) Innovationsmanagement. Springer, Berlin, pp 1–16CrossRefGoogle Scholar
  2. 2.
    Schuh G (2005) Produktkomplexität managen: Strategien—Methoden—Tools, 2nd edn. Carl Hanser, München [u.a]Google Scholar
  3. 3.
    Brecher C, Karmann WO (2012) Introduction. In: Brecher C (ed) Integrative production technology for high-wage countries. Springer, Berlin, pp 1–15CrossRefGoogle Scholar
  4. 4.
    Lindemann U, Maurer M, Braun T (2009) Structural complexity management: an approach for the field of product design. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Firchau NL (2003) Variantenoptimierende Produktgestaltung. Dissertation, Technische Universität BraunschweigGoogle Scholar
  6. 6.
    Schuh G, Arnoscht J, Vogels T (2013) Controlling der Varianzsensitivität in Baukastensystemen. Controlling: Zeitschrift für erfolgsorientierte Unternehmenssteuerung 13(2):82–89Google Scholar
  7. 7.
    Schuh G, Lenders M, Arnoscht J, Rudolf S (2010) Effizienter innovieren mit Produktbaukästen. WZL, AachenGoogle Scholar
  8. 8.
    Simpson TW, Siddique Z, Jiao J (eds) (2006) Product platform and product family design: methods and applications. Springer, New YorkGoogle Scholar
  9. 9.
    Schuh G, Schiffer M, Arnoscht J (2012) Scenario based development of robust product architectures. In: Kocaoglu DF, Anderson TR, Daim TU (eds) Proceedings of PICMET ‘12: Technology Management for Emerging Technologies, pp 2542–2549Google Scholar
  10. 10.
    Suh ES, de Weck OL (2007) Flexible product platforms: framework and case study. Res Eng Design 18(2):67–89CrossRefGoogle Scholar
  11. 11.
    Suh ES (2005) Flexible product platforms. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  12. 12.
    Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product platform architectures. Res Eng Design 11(13):213–235Google Scholar
  13. 13.
    Schuh G, Lenders M, Bender D (2009) Szenariorobuste Produktarchitekturen. In: Gausemeier J (ed) Vorausschau und Technologieplanung. HNI, Paderborn, pp 99–119Google Scholar
  14. 14.
    Rathnow PJ (1993) Integriertes Variantenmanagement: Bestimmung, Realisierung und Sicherung der optimalen Produktvielfalt. Innovative Unternehmensführung, vol 20. Vandenhoeck & Ruprecht, GöttingenGoogle Scholar
  15. 15.
    Lösch J (2001) Controlling der Variantenvielfalt: Eine koordinationsorientierte Konzeption zur Steuerung von Produktvarianten. Berichte aus der Betriebswirtschaft, ShakerGoogle Scholar
  16. 16.
    Hülle J (2012) Strategische Steuerung der Variantenvielfalt. Der Analytic Network Process (ANP) zur kosten-nutzenoptimalen Produktvariantenbewertung, 1st edn. Controlling und Performance-Management, vol. 7. Cuvillier, GöttingenGoogle Scholar
  17. 17.
    Saaty TL, Vargas LG (2006) Decision making with the analytic network process: Economic, political, social and technological applications with benefits, opportunities, costs and risks. International series in operations research and management science, vol 95. Springer, New YorkGoogle Scholar
  18. 18.
    Jiang L, Allada V (2005) Robust modular product family design using a modified Taguchi method. J Eng Des 16(5):443–458CrossRefGoogle Scholar
  19. 19.
    Gausemeier J (ed) (2009) Vorausschau und Technologieplanung: HNI-Verlagsschriftenreihe, vol 265. HNI, PaderbornGoogle Scholar
  20. 20.
    Wade W, Wagner N (2012) Scenario planning: a field guide to the future. Wiley, HobokenGoogle Scholar
  21. 21.
    Bazerman MH (1986) Judgment in managerial decision making: Wiley series in management. Wiley, New YorkGoogle Scholar
  22. 22.
    Schoemaker PJ (1995) Scenario Planning: a tool for strategic thinking. Sloan Manag Rev 36:25–40Google Scholar
  23. 23.
    Gausemeier J, Fink A, Schlake O (1998) Scenario management: an approach to develop future potentials. Technol Forecast Soc Chang 59(2):111–130CrossRefGoogle Scholar
  24. 24.
    Gausemeier J, Plass C, Wenzelmann C (2009) Zukunftsorientierte Unternehmensgestaltung: Strategien, Geschäftsprozesse und IT-Systeme für die Produktion von morgen. Hanser, MünchenGoogle Scholar
  25. 25.
    Gausemeier J, Fink A, Schlake O (1995) Szenario-Management: Planen und Führen mit Szenarien. Hanser, MünchenGoogle Scholar
  26. 26.
    Naunin D (2007) Hybrid-, Batterie- und Brennstoffzellen-Elektrofahrzeuge: Technik, Strukturen und Entwicklungen; mit 8 Tab, 4th edn. Kontakt & Studium, vol 255. Expert, RenningenGoogle Scholar
  27. 27.
    Wallentowitz H, Freialdenhoven A, Olschewski I (2010) Strategien zur Elektrifizierung des Antriebstranges: Technologien, Märkte und Implikationen. Strategien zur Elektrifizierung des Antriebstranges Google Scholar
  28. 28.
    VanGundy AB (1984) Brain writing for new product ideas: an alternative to brainstorming. J Consum Mark 1(2):67–74CrossRefGoogle Scholar
  29. 29.
    Fischer RG (1978) The delphi method: a description, review, and criticism. J Acad Librariansh 4(2):64–70Google Scholar
  30. 30.
    Maze-Emery E (2008) Knowing the cause is half the battle. Symptoms can be signposts on the route to curing problems. Tooling & Production November/Dezember:28–29Google Scholar
  31. 31.
    Capgemini U.S. LLC (2013) My car, my way. Cars Online 12/13Google Scholar
  32. 32.
    Fama EF, French KR (2010) Luck versus skill in the cross-section of mutual fund returns. J Finan 65(5):1915–1947CrossRefGoogle Scholar
  33. 33.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Computing Surveys 31(3):264–323 CrossRefGoogle Scholar
  34. 34.
    Korreck A (2002) Methodik zur markt- und kostenorientierten Variantenplanung. Shaker, AachenGoogle Scholar
  35. 35.
    Call G (1997) Entstehung und Markteinführung von Produktneuheiten. Schriftenreihe Unternehmensführung und Marketing, vol 33. Gabler, WiesbadenGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • Günther Schuh
    • 1
  • Wolfgang Schultze
    • 2
  • Michael Schiffer
    • 1
    Email author
  • Annette Rieger
    • 2
  • Stefan Rudolf
    • 1
  • Heiko Lehbrink
    • 3
  1. 1.Laboratory for Machine Tools and Production Engineering WZLRWTH AachenAachenGermany
  2. 2.Chair of Accounting and ControlAugsburg UniversityAugsburgGermany
  3. 3.StuttgartGermany

Personalised recommendations