Advertisement

Production Engineering

, Volume 8, Issue 3, pp 345–353 | Cite as

Simulation of grinding processes using finite element analysis and geometric simulation of individual grains

  • T. SiebrechtEmail author
  • D. Biermann
  • H. Ludwig
  • S. Rausch
  • P. Kersting
  • H. Blum
  • A. Rademacher
Computer Aided Engineering

Abstract

The wear-resistance of sheet metal forming tools can be increased by thermally sprayed coatings. However, without further treatment, the high roughness of the coatings leads to poor qualities of the deep drawn sheet surfaces. In order to increase the surface quality of deep drawing tools, grinding on machining centers is a suitable solution. Due to the varying engagement situations of the grinding tools on free-formed surfaces, the process forces vary as well, resulting in inaccuracies of the ground surface shape. The grinding process can be optimized by means of a simulative prediction of the occurring forces. In this paper, a geometric-kinematic simulation coupled with a finite element analysis is presented. Considering the influence of individual grains, an additional approximation to the resulting topography of the ground surface is possible. By using constructive solid geometry and dexel modeling techniques, multiple grains can be simulated with the geometric-kinematic approach simultaneously. The process forces are predicted with the finite element method based on an elasto-plastic material model. Single grain engagement experiments were conducted to validate the simulation results.

Keywords

Grinding simulation FEA Process forces Single grain Hard material coatings 

Notes

Acknowledgments

This research has been kindly funded by the German Research Foundation (DFG) in research project A5 “Simulation supported NC-shape grinding as a finishing operation of thermally coated deep drawing tools” within the Collaborative Research Center (SFB) 708” 3D-Surface Engineering of Tools for Sheet Metal Forming–Manufacturing, Modeling, Machining”.

References

  1. 1.
    Aurich J, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5(3):164–74. doi: 10.1016/j.cirpj.2012.07.004 CrossRefGoogle Scholar
  2. 2.
    Bailey M, Hedges L (1995) Die Kristallmorphologie von Diamant und ABN. IDR 3:126–29Google Scholar
  3. 3.
    Blum H, Schröder A, Rademacher A, Ludwig H, Kleemann H, Rosin K (2013) SOFAR: scientific object oriented finite element library for application and research. http://www.mathematik.tu-dortmund.de/lsx/research/software/sofar/index.html. Accessed 11 Nov 2013
  4. 4.
    Brinksmeier E, Aurich J, Govekar E, Heinzel C, Hoffmeister HW, Peters J, Rentsch R, Stephenson D, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modelling and simulation of grinding processes. Ann CIRP 55:667–96. doi: 10.1016/j.cirp.2006.10.003 Google Scholar
  5. 5.
    China jiangyou longhai Special Steel Co L (2011) Data table for: tool steel 1.3343. http://www.steelss.com/Tool-steel/din-1-3343.html. Accessed 11 Nov 2013
  6. 6.
    Deichmueller M, Denkena B, de Payrebrune KM, Kröger M, Wiedemann S, Schröder A, Carstensen C (2013) Modeling of process machine interactions in tool grinding. In: Denkena B, Hollmann F (eds) Process machine interactions, Springer, Berlin pp 143–76. doi: 10.1007/978-3-642-32448-2_7
  7. 7.
    Denkena B, Kühler J, Kästner J (2012) Chip formation in grinding: an experimental study. Prod Eng Res Dev 6:107–15. doi: 10.1007/s11740-011-0360-8 CrossRefGoogle Scholar
  8. 8.
    Foley JD, Van Dam A, Feiner SK, Hughes JF, Phillips RL (1993) Introduction to computer graphics. Addison-Wesley, ReadingGoogle Scholar
  9. 9.
    Frohne J (2011) FEM-Simulation der Umformtechnik metallischer Oberflächen im Mikrokosmos. PhD thesis, University of SiegenGoogle Scholar
  10. 10.
    Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–31. doi: 10.1002/nme.2579 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Haslinger J (1981) Mixed formulation of elliptic variational inequalities and its approximation. Appl Math 26:462–75zbMATHMathSciNetGoogle Scholar
  12. 12.
    Holtermann R, Schumann S, Menzel A, Biermann D (2013) Modelling, simulation and experimental investigation of chip formation in internal traverse grinding. Prod Eng Res Dev 7:251–63. doi: 10.1007/s11740-013-0449-3 CrossRefGoogle Scholar
  13. 13.
    Johnson C (1978) On plasticity with hardening. J Math Anal Appl 62:325–36CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kienzle O, Victor H (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z 94:299–305Google Scholar
  15. 15.
    Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  16. 16.
    Kleemann H (2011) Adaptive FEM für Mehrkörperkontaktprobleme. PhD thesis, Technische Universität DortmundGoogle Scholar
  17. 17.
    Mohn T, Rausch S, Biermann D (2010) Grinding simulation by technologically enhanced and geometrically optimized multi-dexel models. In: CIRP ICME ’10–7th CIRP international conference on intelligent computation in manufacturing engineering, ItalyGoogle Scholar
  18. 18.
    Murthy J, Rao D, Venkataraman B (2001) Effect of grinding on the erosion behavior of a wc-co-cr coating deposited by hvof and detonation gun spray processes. Wear 249:592–600. doi: 10.1016/S0043-1648(01)00682-2 CrossRefGoogle Scholar
  19. 19.
    Rausch S, Biermann D (2012) Grinding of hard-material-coated forming tools on machining centers. Procedia CIRP 1:388–92. doi: 10.1016/j.procir.2012.04.069 CrossRefGoogle Scholar
  20. 20.
    Rausch S, Odendahl S, Kersting P, Biermann D, Zabel A (2012) Simulation-based prediction of process forces for grinding free-formed surfaces on machining centers. Procedia CIRP 4:161–65. doi: 10.1016/j.procir.2012.10.029 CrossRefGoogle Scholar
  21. 21.
    Ruttimann N, Buhl S, Wegener K (2010) Simulation of single grain cutting using sph method. J Mach Eng 10:17–29Google Scholar
  22. 22.
    Tekkaya AE, Kleiner M, Biermann D, Hiegemann L, Rausch S, Franzen V, Kwiatkowski L, Kersting P (2013) Friction analysis of thermally sprayed coatings finished by ball burnishing and grinding. Prod Eng Res Dev 7:601–10. doi: 10.1007/s11740-013-0485-z CrossRefGoogle Scholar
  23. 23.
    Tillmann W, Vogli E, Baumann I, Krebs B, Nebel J (2009) Thermally sprayed wear-protective cermet coatings for forming tools. In: 4th international conference on spray deposition and melt atomization (SDMA), BremenGoogle Scholar
  24. 24.
    Weinert K, Stautner M (2002) An efficient discrete simulation for five-axis milling of sculptured surfaces. Prod Eng Res Dev 9(1):47–51Google Scholar
  25. 25.
    Wiederkehr T, Kout A, Müller H (2008) Graphical simulation and visualization of spray-coating processes in computer-aided engineering. In: Proceedings vision, modeling and visualization (VMV) 2008Google Scholar
  26. 26.
    Zabel A, Odendahl S, Peuker A (2009) Combining different modeling techniques to optimize the simulation of the five-axis milling process. In: Proceedings of the 5th international conference and exhibition on design and production of machines and dies/molds, TurkeyGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2014

Authors and Affiliations

  • T. Siebrecht
    • 1
    Email author
  • D. Biermann
    • 1
  • H. Ludwig
    • 2
  • S. Rausch
    • 1
  • P. Kersting
    • 1
  • H. Blum
    • 2
  • A. Rademacher
    • 2
  1. 1.Institute of Machining TechnologyTU Dortmund UniversityDortmundGermany
  2. 2.Chair for Scientific ComputingTU Dortmund UniversityDortmundGermany

Personalised recommendations