Advertisement

Production Engineering

, Volume 8, Issue 3, pp 263–272 | Cite as

Analysis of friction between stainless steel sheets and machine hammer peened structured tool surfaces: experimental and numerical investigation of the lubricated interaction gap

  • F. Klocke
  • D. TrauthEmail author
  • F. Schongen
  • A. Shirobokov
Production Process

Abstract

Forming of stainless steel with stringent requirements on surface integrity is currently realized using protective foils as a separating agent between tools and workpiece. The protective foils are applied with special machines and need to be removed after the forming process or at the end customer. This approach has pronounced economic and ecological disadvantages. Alternative tribological systems for a foil free forming are insufficiently researched and not yet reliably applicable in a production process. Recent developments in the field of machine hammer peening motivate the investigation of surface modifications for foil free sheet metal forming. The research question of this paper is: under which tribological boundary conditions do structured tool surfaces provide a total separation of tools and workpiece? The performed research work is based on experimental analyses investigating the friction behavior of surface structured tools. Numerical simulations of normal and sliding contact using finite element method enable the investigation of the lubricated interaction gap in order to identify significant tribological process parameters.

Keywords

Foil-free Forming Stainless steel Surface structures Finite element method Machine hammer peening 

Notes

Acknowledgments

The authors would like to thank the European Union, Investing in our Future, European Regional Development Fund within the Initiative Ziel2.NRW for partly funding this research work. Further, we express our gratitude to the following industrial partners for their support in conducting the experiments cited in this paper: accurapuls GmbH, Miele Cie. & KG, Outokumpu Nirosta GmbH.

References

  1. 1.
    Adjassoho B, Kozeschnik E, Lechner C, Bleicher F, Goessinger S, Bauer C (2013) Controlled surface treatment with machine Hammer Peening. In: Proceedings of the 22nd international conference on metallurgy and materials, Czech RepublicGoogle Scholar
  2. 2.
    Bay N, Azushima A, Groche P, Ishibashi I, Merklein M, Morishita M, Nakamura T, Schmid S, Yoshida M (2010) Environmentally benign tribosystems for metal forming. CIRP Annal Manuf Technol 59(2):760–780CrossRefGoogle Scholar
  3. 3.
    Bleicher F, Lechner C, Habersohn C, Kozeschnik E, Adjassoho B, Kaminiski H (2012) Mechanism of surface modification using machine Hammer Peening technology. CIRP Annal Manuf Technol 61(1):375–378CrossRefGoogle Scholar
  4. 4.
    Czichos H (2008) Tribologie-Handbuch—tribometrie, tribomaterialien, tribotechnik. Springer, BerlinGoogle Scholar
  5. 5.
    Duncan J, Shabel BJ (1978) A tensile strip test for evaluating friction in sheet metal forming. Aluminium 54(9):585–588Google Scholar
  6. 6.
    Emmens W-C (1997) Tribology of flat contacts and its application in deep drawing. PHD-Thesis, University Of TwenteGoogle Scholar
  7. 7.
    Europäisches Parlament (2006) Rat: Verordnung (EG) Nr. 1907/2006 des Europäischen Parlaments und RatesGoogle Scholar
  8. 8.
    Faulkner P-G Forming Process. United States Patent Office US 000004096815 (27.06.1978)Google Scholar
  9. 9.
    Gebauer H (2006) Verfahren zum Tiefziehen eines flächigen Blechzuschnitts mit einem Tiefziehwerkzeug. European patent application DE 10 2005 0236 158 A1. BSH Bosch und Siemens Hausgeräte GmbH, 23 Nov 2006Google Scholar
  10. 10.
    Groche P, Kloepsch C, Moeller N (2012) Numerical analysis of the potential of deep drawing processes with hydrostatic pressure lubrication. Prod Eng 6(2):157–167CrossRefGoogle Scholar
  11. 11.
    Hartner E (2010) Verfahren zum Umformen eines flächigen Blechzuschnitts sowie zugehöriges Hausgerät. European patent application DE 10 2008 043 359 A1 BSH Bosch und Siemens Hausgeräte GmbH, 12 May 2010Google Scholar
  12. 12.
    ICFG Doc (1996) Lubrication aspects in cold forging of aluminum and aluminum alloys. In: WIRE, vol 1, p. 1–12Google Scholar
  13. 13.
    Izumi S (1975) Sheet metal treated With lubrication for Press Work. United States Patent Office US000003899625, 12 Aug 1975Google Scholar
  14. 14.
    Klaiber M-H (1970) Aqueous lubrications for metal working. United States Patent Office US000003501404, 17 March 1970Google Scholar
  15. 15.
    Klocke F, Trauth D, Schongen F, Terhorst M (2013) Zeiteffiziente Prozessauslegung beim Festklopfen–Vorhersage des Randschichtzustandes mithilfe der Ähnlichkeitsmechanik. In: wt online, vol 10, DüsseldorfGoogle Scholar
  16. 16.
    Lechner C, Bleicher F, Habersohn C, Bauer C, Goessinger S (2012) The use of machine hammer peening for smoothing and structuring of surfaces. In: Annals of DAAAM for 2012, vol 23, No. 1, AustriaGoogle Scholar
  17. 17.
    Mader S (2006) Festwalzen von Fan- und Verdichterschaufeln. PHD-Thesis RWTH Aachen UniversityGoogle Scholar
  18. 18.
    Meyer D, Kruse D, Bobe A, Goch G, Brinksmeier E (2010) Nondestructive characterization of the surface integrity of cold surface hardened components. Prod Eng 4(5):443–449Google Scholar
  19. 19.
    Rosenberg F (1971) Preparation of metal for deforming operations. United States Patent Office US000003568486, 09 March 1971Google Scholar
  20. 20.
    Scheil J Müller C, Steitz M, Groche P (2013) Influence of process parameters on surface hardening in Hammer Peening and deep rolling. Key Eng Mater 554–557:1819Google Scholar
  21. 21.
    Siegloch H (2007) Technische Fluidmechanik. Springer, BerlinGoogle Scholar
  22. 22.
    Soas T (2004) Verfahren und Vorrichtung zum kontinuierlichen Beschichten zumindest eines metallischen Bandes mit Flüssigkeitsfilm aus vernetzbarem Polymer. European Patent Office DE 699 10 430 T2, 11 March 2004. Sollac S.A., Puteaux, FranceGoogle Scholar
  23. 23.
    Steitz M, Scheil J, Müller C, Groche P (2013) Effect of process parameters on surface roughness in Hammer Peening and deep rolling. Key Eng Mater 554–557:1887Google Scholar
  24. 24.
    Tekkaya AE, Kleiner M, Biermann D, Hiegemann L, Rausch S, Franzen V, Kwiatkowski L, Kersting P (2013) Friction analysis of thermally sprayed coatings finished by ball burnishing and grinding. Prod Eng 7(6):601–610Google Scholar
  25. 25.
    Topper H-H (1961) Coating compositions for use in sheet metal working. UK Intellectual Property Office GB00000872581, 12 July 1961Google Scholar
  26. 26.
    Trauth D, Klocke F, Schongen F, Shirobokov A (2013) Analyse und Modellierung der Schlagkraft beim elektro-dynamischen Festklopfen zur kraftbasierten Prozessauslegung. In: UTFScience III/2013, http://www.umformtechnik.net
  27. 27.
    Trauth D, Klocke F, Mattfeld P, Klink A (2013) Time-efficient prediction of the surface layer state after deep rolling using similarity mechanics approach. In: Procedia CIRP, vol 9C, pp 29–34Google Scholar
  28. 28.
    Wahl R (2011) Untersuchung des Einflusses von Mikrotexturierungen auf den einsinnigen, ölgeschmierten Gleitkontakt von Stahl/Saphir-PaarungenGoogle Scholar
  29. 29.
    Wilhelms R (1994) Verfahren zur Verbesserung der Tiefziehbarkeit eines Metallblechs oder eines Metallnapfes. European Patent Office DE69010207T2, 01 Dec1994. Sollac, Puteaux, FranceGoogle Scholar
  30. 30.
    Wied J (2011) Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen. PHD-Thesis TU DarmstadtGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2013

Authors and Affiliations

  • F. Klocke
    • 1
  • D. Trauth
    • 1
    Email author
  • F. Schongen
    • 1
  • A. Shirobokov
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) RWTH Aachen UniversityAachenGermany

Personalised recommendations