Advertisement

Production Engineering

, Volume 8, Issue 1–2, pp 63–72 | Cite as

A method to detect the level and direction of mechanical forces with the aid of load-induced martensitic phase transformation

  • Bernd-Arno Behrens
  • Hans Jürgen Maier
  • Friedrich-Wilhelm Bach
  • Wilfried Reimche
  • Grzegorz Mroz
  • Jens SchrödterEmail author
  • Jan Jocker
Production Process
  • 175 Downloads

Abstract

Information on the mechanical load which has been applied on a component during its lifecycle is becoming more and more interesting in order to assist the development of new generations of lightweight components. To collect this information from a large number of components in the field, cost-effective sensor techniques are required. The idea of the research presented in this paper is to qualify the base material of a component itself as a sensor. Load-induced changes in the microstructure of metastable austenitic sheet metals at the basis for this idea. Capabilities of increasing the sensitivity related to load-induced martensite phase transformations with the aid of metal forming operations as well as an approach to detect the direction of mechanical forces using embossed sensor fields are presented. The development of sensor fields based on FE-simulation as well as the results of experimental tests are discussed.

Keywords

Load detection Martensite Phase transformation Austenitic steel Eddy current testing Metal forming Sheet metal Embossing 

Notes

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for funding the Collaborative Research Centre CRC 653. The work presented within this paper was part of the CRC Subprojects S2 and S3.

References

  1. 1.
    Behrens B-A, Weilandt K (2009) Mathematical description of α′–martensite formation and its application for the detection of damage in sheet metal. In: Materials Science and Technology, pp 1485–1496Google Scholar
  2. 2.
    Behrens B-A, Doege E, Springub B (2004) Transformation induced martensite evolution in metal forming processes of stainless steels. Steel Res Int 75(7):475–482Google Scholar
  3. 3.
    Behrens BA, Weilandt K (2008) A procedure for the sensitisation of α′–martensite evolution, 4th I*PROMS virtual international conference on innovative production machines and systemsGoogle Scholar
  4. 4.
    Behrens B-A, Voges-Schwieger K, Schrödter J, Jocker J (2012) Load sensitive control arm based on martensitic phase transformation. Proceedings of the 1st joint international symposium (SysInt), pp 52–55Google Scholar
  5. 5.
    Barenbrock D (2002) Einfluss verformungsinduzierter Martensitumwandlung auf das Rissfortschrittsverhalten austenitischer Stähle, PhD Thesis, Universität HannoverGoogle Scholar
  6. 6.
    Bassler H-J (1999) Wechselverformungsverhalten und verformungsinduzierte Martensitbildung bei dem metastabilen austenitischen Stahl X6CrNiTi1810, PhD Thesis, Technical University of KaiserslauternGoogle Scholar
  7. 7.
    Weiss A, Eckstein HJ (1990) Martensitbildung in korrosionsbeständigen Stählen. Korrosionsbeständige Stähle, Deutscher Verlag für Grundstoffindustrie GmbH, pp 89–98Google Scholar
  8. 8.
    Kranz SW (1999) Mechanisch-technologische Eigenschaften metastabiler austenitischer Edelstähle und deren Beeinflussung durch TRIP-Effekt, PhD-Thesis, Technical University of AachenGoogle Scholar
  9. 9.
    Ludwigson DC, Berger JA (1969) Plastic behaviour of metastable austenitic stainless steels. J Iron Steel Inst 207:63–69Google Scholar
  10. 10.
    Smaga M (2005) Experimentelle Untersuchung der Mikrostruktur sowie des Verformungs- und Umwandlungsverhaltens zyklisch beanspruchter metastabiler austenitischer Stähle, PhD Thesis, Technical University of KaiserslauternGoogle Scholar
  11. 11.
    Angel T (1954) Formation of martensite in austenitic stainless steels. J Iron Steel Inst 165–174 Google Scholar
  12. 12.
    Hänsel A-H-C, Hora P, Reissner J (1998) Model for the kinetics of strain-induced martensitic phase transformation at non isothermal conditions for the simulation of sheet metal forming processes with metastable austenitic steels. Simulation of Materials Processing: Theory, Methods and Applications, RotterdamGoogle Scholar
  13. 13.
    Khan Z, Ahmed M (1996) Stress-induced martensitic transformation in metastabile austenitic stainless steels: effect on fatigue crack growth rate. J Mater Eng Perform 5(2):201–208CrossRefGoogle Scholar
  14. 14.
    Choi JY, Won Jin (1997) Strain induced martensite formation and its effect on strainhardening behavior in the cold drawn 304 austenitic steels. Scr Mater 36(1):99–104CrossRefGoogle Scholar
  15. 15.
    Kamp M (2008) Nutzung der spannungs- und verformungsinduzierten Martensitbildung zum Nachweis mechanischer Belastungen an lokal umgeformten metastabilen austenitischen Edelstahl X5CrNi18-10, PhD-Thesis, Universität HannoverGoogle Scholar
  16. 16.
    Weilandt K (2011) Experimentelle und numerische Untersuchungen zur Martensitbildung unter quasistatischer und zyklischer Belastung, PhD Thesis, Leibniz Universität HannoverGoogle Scholar
  17. 17.
    Tsuta T, Cortes R-J-A (1993) Flow stress and phase transformation analyses in austenitic stainless steel under cold working, Part 2. JSME Int J 36:63–72Google Scholar
  18. 18.
    Springub B (2006) Semi-analytische Betrachtung des Tiefziehens rotationssymmetrischer Bauteile unter Berücksichtigung der Martensitevolution, PhD Thesis, Universität HannoverGoogle Scholar
  19. 19.
    Behrens B-A, Voges-Schwieger K, Weilandt K, Schrödter J, Jocker J (2011) α′–martensite formation and a new method for the detection of damages in sheet metal components. Proceedings of the 7th European stainless steel conference science and marketGoogle Scholar
  20. 20.
    Wolfram W (2002) Zerstörungsfreie Prüfung dickwandiger austenitischer Rohre und Rohrbögen mit fortschrittlicher Wirbelstromtechnik, PhD Thesis, Universität HannoverGoogle Scholar
  21. 21.
    Reimche W, Bach Fr-W, Zwoch S, Stahlhut C, von der Haar C, Kallage P, Herzog D, Haferkamp H (2009) Eddy current technology—a new procedure for the detection of zero-gap grooves during laser welding. Weld Cut 8(6):359–364Google Scholar
  22. 22.
    Zergoug M, Lebaili S, Boudjellal H, Benchaala A (2004) Relation between mechanical microhardness and impedance variations in eddy current testing. NDT E Int 37:65–72CrossRefGoogle Scholar
  23. 23.
    Weber W, Feiste KL, Siebert G, Reimche W, Stegemann D, Lucht B (2000) Remote field eddy current technique for the inspection of thick walled austenitic pipes. Proceedings of the 2nd international conference on NDE in relation to structural integrity for nuclear and pressurized components, Palo Alto USA, pp B203–B218Google Scholar
  24. 24.
    Reimche W, Duhm R, Zwoch S, Bernard M, Bach Fr-W (2006) Development and qualification of a process-oriented nondestructive test method for weld joints to operate with remote field eddy current technique. NDT E Int 11(11):1435–4934Google Scholar
  25. 25.
    Mroz G, Reimche W, Bach Fr-W (2012) The use of components edge region as inherent information carriers and loading indicators, 1st CIRP conference of surface integrity (CSI), pp 158–160Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2013

Authors and Affiliations

  • Bernd-Arno Behrens
    • 1
  • Hans Jürgen Maier
    • 2
  • Friedrich-Wilhelm Bach
    • 2
  • Wilfried Reimche
    • 2
  • Grzegorz Mroz
    • 2
  • Jens Schrödter
    • 1
    Email author
  • Jan Jocker
    • 1
  1. 1.Institute of Forming Technology and MachinesLeibniz Universität HannoverGarbsenGermany
  2. 2.Institute of Materials ScienceLeibniz Universität HannoverGarbsenGermany

Personalised recommendations