Production Engineering

, Volume 8, Issue 1–2, pp 153–164 | Cite as

Towards a definition of large scale products

  • Bernd-Arno Behrens
  • Peter Nyhuis
  • Ludger Overmeyer
  • Aaron Bentlage
  • Tilmann Rüther
  • Georg Ullmann
Production Management

Abstract

The range of structure sizes for industrial products produced today is increasingly expanding. This trend is evident both at the bottom end of the scale as well as the top end. Examples include the ever-smaller miniaturization of devices in the semiconductor industry and the increase in rotor diameter of wind turbines. While definitions already exist for smaller scale device structures e.g. nanotechnology, the conceptual distinction between conventional large products and large scale products is currently insufficient. In this study, we present a potential basis for the definition of large scale products. To achieve this, we first of all derive hypotheses and examine these in the context of an empirical study using the examples of threaded nuts, screw presses and passenger aircraft. The study shows that the transition from conventional products to large scale products is characterized by a disproportionate increase in product costs due to the augmentation of a characteristic product feature. Based on the findings described, we then derive a proposed definition which characterizes large scale products on the basis that man encounters his technical, organizational and economic limits with the methods and tools available at the time of observation, in the context of product creation.

Keywords

XXL Large scale Products Definition 

Notes

Acknowledgments

The IPH researched scientific issues and practical challenges in the production of large scale products as part of a joint research project entitled “Innovations for the Manufacture of Large Scale Products.” This collaborative project is funded by the Lower Saxony Ministry of Science and Culture and by the Lower Saxony Ministry for Economic Affairs, Labor and Transport. The project was supported by the Investment and Development Bank of Lower Saxony—NBank.

References

  1. 1.
    Kagermann H et al (2013) Deutschlands Zukunft als Produktionsstandort sichern—Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0. http://www.forschungsunion.de/pdf/industrie_4_0_abschlussbericht.pdf.  Accessed 1 Oct 2013
  2. 2.
    French RH, Tran HV (2009) Immersion lithography: photomask and wafer-level materials. Annu Rev Mater Res 39(1):93–126CrossRefGoogle Scholar
  3. 3.
    Yu M-F, Lourie O et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640CrossRefGoogle Scholar
  4. 4.
    NN (2012) Windenergiereport Deutschland 2011, Hrsg: Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Bereich Energiewirtschaft & Netzbetrieb, Kassel. http://www.fraunhofer.de/content/dam/zv/de/forschungsthemen/energie/Windreport-2011-de.pdf. Accessed 1 Oct 2013
  5. 5.
    Papsch C, Dicker P (2011) Deutsche Seeschifffahrt, Hrsg: Verband Deutscher Reeder e. V., Heft 7–8, S. 22–33 [Papsch C, Dicker P (2011) German ocean shipping industry. German Shipowners’ Association, issue 7–8, pp 22–33]Google Scholar
  6. 6.
    Schmid G, Decker M, Ernst H et al (2013) Small dimensions and material properties—a definition of nanotechnology, Europäische Akademie, Graue Reihe no. 35. http://www.ea-aw.de/fileadmin/downloads/Graue_Reihe/GR_35_Nanotechnology_112003.pdf. Accessed 1 Oct 2013
  7. 7.
    NN (2002) Standortbestimmung: Nanotechnologie in Deutschland. Bundesministerium für Bildung und Forschung, Bonn. http://www.allianz-fuer-wissenschaft.de/download/allgemein/nanotechnologie_in_deutschland-standortbestimmung.pdf. Accessed 1 Oct 2013
  8. 8.
    Behrens B-A, Overmeyer L, Nyhuis P et al (2009) XXL-Produkte—ein Trend in der Produktionstechnik. In: VDI-Z Integrierte Produktion. Springer, New York, 151. Jg., H.7/8, S 56–58Google Scholar
  9. 9.
    Behrens B-A, Overmeyer L, Nyhuis P et al (2011) Großskalige Produkte—Forschung und Entwicklung im Bereich der großskaligen Produktion. In: wt Werkstatttechnik online. Springer, New York, 101. Jg., H. 6, S 446–448Google Scholar
  10. 10.
    Wanner M-C (2010) Großstrukturen. Zehn Jahre Forschung für die Praxis. Verlag Redieck & Schade, RostockGoogle Scholar
  11. 11.
    Nyhuis P, Heinen T, Reinhart G et al (2008).: Wandlungsfähige Produktionssysteme: Theoretischer Hintergrund zur Wandlungsfähigkeit von Produktionssystemen. In: wt Werkstattstechnik online 98 Nr. 1/2, S. 85–91Google Scholar
  12. 12.
    Bondi B (2000) Characteristics of scalability and their impact on performance. In: Proceedings of the 2nd international workshop on software and performance (WOSP ‘00). ACM, New York, pp 195–203Google Scholar
  13. 13.
    Ehrlenspiel K, Kiewert A, Lindemann U (2007) Kostengünstig Entwickeln und Konstruieren—Kostenmanagement bei der integrierten Produktentwicklung. Springer, BerlinGoogle Scholar
  14. 14.
    Aumayr KJ (2009) Erfolgreiches Produktmanagement: Tool-Box für das professionelle Produktmanagement und Produktmarketing. Betriebswirtschaftlicher Verlag Th.Gabler, 2, Auflage, WiesbadenCrossRefGoogle Scholar
  15. 15.
  16. 16.
    NN (2013) Verbraucherpreisindizes für Deutschland—Lange Reihen ab 1948, Hrsg: Statistisches Bundesamt, Wiesbaden. https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Verbraucherpreise/VerbraucherpreisindexLangeReihenPDF_5611103.pdf?__blob=publicationFile. Accessed 1 Oct 2013

Copyright information

© German Academic Society for Production Engineering (WGP) 2013

Authors and Affiliations

  • Bernd-Arno Behrens
    • 1
  • Peter Nyhuis
    • 1
  • Ludger Overmeyer
    • 1
  • Aaron Bentlage
    • 1
  • Tilmann Rüther
    • 1
  • Georg Ullmann
    • 1
  1. 1.Institut für Integrierte Produktion Hannover (IPH)HannoverGermany

Personalised recommendations