Production Engineering

, Volume 7, Issue 2–3, pp 251–263 | Cite as

Modelling, simulation and experimental investigation of chip formation in internal traverse grinding

  • Raphael HoltermannEmail author
  • Sebastian Schumann
  • Andreas Menzel
  • Dirk Biermann
Computer Aided Engineering


We present recent developments in modelling and simulation of internal traverse grinding, a high speed machining process which enables both a large material removal rate and high surface quality. We invoke a hybrid modelling framework, including a process scale model, simulations on a mesoscale capturing the proximity of a single cBN grain and an analysis framework to investigate the grinding wheel topography. Moreover, we perform experiments to verify our simulations. Focus in this context is the influence of the cutting speed variation on the grain specific heat generation.


Grinding 100Cr6(AISI 52100) cBN Finite element method h-Adaptive remeshing Extended Johnson–Cook plasticity 



Financial support by the Deutsche Forschungsgemeinschaft (DFG) in the context of SPP 1480 (project IDs: ME 1745/7–2; BI 498/23-1) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Marschalkowski K (2010) Beitrag zur Prozessentwicklung für das Hochleistungsinnenrund-Schälschleifen mit galvanisch gebundenen CBN-Schleifscheiben. Dissertation, TU DortmundGoogle Scholar
  2. 2.
    Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann Manuf Technol 54:22–45CrossRefGoogle Scholar
  3. 3.
    Holtermann R, Schumann S, Menzel A, Biermann D (2012) Ansätze zur modellierung und simulation des Innenrundschälschleifens. Diam Bus 40:30–41Google Scholar
  4. 4.
    Treffert C (1994) Hochgeschwindigkeitsschleifen mit galvanisch gebundenen CBN-Schleifscheiben. Dissertation, RWTH AachenGoogle Scholar
  5. 5.
    Tawakoli T, Schmid R, Vesali A, Padilla-Ley A (2011) Rekonstruktion der Schleifscheibentopographie mit Hilfe der Bildverarbeitungsmethoden. dihw Diamant Hochleistungswerkzeuge 4:32–39Google Scholar
  6. 6.
    Warnecke G, Zitt U (1998) Kinematic simulation for analyzing and predicting high-performance grinding processes. CIRP Ann Manuf Technol 1:265–270CrossRefGoogle Scholar
  7. 7.
    Aurich JC, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5:164–174CrossRefGoogle Scholar
  8. 8.
    Hecker R, Liang SY (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tools Manuf 43:755–761CrossRefGoogle Scholar
  9. 9.
    Stepień P (2009) A probabilistic model of the grinding process. Appl Math Model 33:3863–3884zbMATHCrossRefGoogle Scholar
  10. 10.
    Klocke F (2009) Manufacturing processes 2—grinding, honing, lapping. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Denkena B, Tönshoff HK (2011) Spanen—Grundlagen, 3rd edn. Springer, BerlinGoogle Scholar
  12. 12.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on Ballistics. The Hague, The Netherlands, pp 541–547Google Scholar
  13. 13.
    Huang Y, Liang S (2003) Force modelling in shallow cuts with large negative rake angle and large nose radius tools. Int J Adv Manuf Technol 22:626–632CrossRefGoogle Scholar
  14. 14.
    Hortig C (2011) Local and non-local thermomechanical modeling and finite-element simulation of high-speed cutting. Dissertation, TU DortmundGoogle Scholar
  15. 15.
    Hortig C, Svendsen B (2007) Simulation of chip formation during high-speed cutting. J Mater Process Technol 186:66–76CrossRefGoogle Scholar
  16. 16.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Num Methods Eng 33:1331–1364MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Poulachon G, Moisan A (2001) A study of chip formation mechanisms in high speed cutting of hardened steel. In: Schulz H (ed) Scientific fundamentals of HSC. Hanser, Munich, pp 11–21Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2013

Authors and Affiliations

  • Raphael Holtermann
    • 1
    Email author
  • Sebastian Schumann
    • 2
  • Andreas Menzel
    • 1
    • 3
  • Dirk Biermann
    • 2
  1. 1.Institute of MechanicsTU DortmundDortmundGermany
  2. 2.Institute of Machining TechnologyTU DortmundDortmundGermany
  3. 3.Division of Solid MechanicsLund UniversityLundSweden

Personalised recommendations