Production Engineering

, Volume 6, Issue 4–5, pp 339–348 | Cite as

Development of a warm cross wedge rolling process using FEA and downsized experimental trials

Production Process

Abstract

Cross wedge rolling is a forming technology that offers a lot of advantages: No flash occurs, cycle times are low, lubricants are not necessary and the machines are easy to automate. Currently, cross wedge rolling is applied at hot temperatures only. An adaption of this technology to warm temperatures (about 500–950 °C) can increase the geometrical spectrum of warm forgings. The advantages of warm forged parts in comparison to hot forged parts are closer tolerances, reduced surface roughness, no scale and reduced decarburization. To apply cross wedge rolling at warm temperatures, the possibilities of defects e. g. internal voids and improper formed work pieces must be analysed. This paper describes the development of a warm cross wedge rolling process with one area reduction. The paper also includes results of finite element analysis (FEA), experimental trials with a downsized work piece and the adaption to the industrial work piece in original size. In the FEA simulations tools with serrations on the side have been used. The downsizing method is explained and the difference between FEA, downsized and originally sized work piece with the focus on forming forces, temperature distribution and defects are presented.

Keywords

Warm forming Cross wedge rolling Finite-elements-analysis Downsizing 

Notes

Acknowledgments

The authors thank the European Commission for the funding of this project (project number: 221967) within the 7th Framework Programme (Research for the Benefits of SMEs; Call identifier: FP7-SME-2007-1).

References

  1. 1.
    Müller S, Lau P, Nickel R (2008) Influence of the process parameters on the multi-directional forging operation of a two cylinder crankshaft. In: TMS 2008 137th annual meeting and exhibition: proceedings of the ninth global innovations symposium, 9–13 March 2008, New Orleans, LA, USA, pp 121–127Google Scholar
  2. 2.
    N N (1998) Kaltmassivumformen von Stählen—Anwendung, Arbeitsbeispiele, Wirtschaftlichkeitsbetrachtungen für das Kaltfließpressen. In: VDI-Richtlinie 3138, VDI-Gesellschaft Produktionstechnik, Düsseldorf, GermanyGoogle Scholar
  3. 3.
    International Cold Forging Group (2001) ICFG Document, No. 12/01, Erlangen, GermanyGoogle Scholar
  4. 4.
    Geiger M, Neugebauer R (2003) Process basics of warm forging for shaft-shaped parts (Prozessgrundlagen für die Halbwarmumformung wellenförmiger Teile mit weit auskragenden Formelementen). Studiengesellschaft Stahlanwendung, Report P 452, Düsseldorf, GermanyGoogle Scholar
  5. 5.
    Hustedt P, Kohlstette J (2003) Warm precision forging of long part (Präzisionsschmieden von Langteilen—jetzt auch im Halbwarmbereich). Schmiedejournal 3:24–26Google Scholar
  6. 6.
    Behrens B-A, Suchmann P, Schott A (2008) Warm forging: new forming sequence for the manufacturing of long flat parts. In: Production engineering, Springer Verlag, Berlin, 2–3, pp 261–268Google Scholar
  7. 7.
    Li Q, Lovell M (2008) Cross wedge rolling failure mechanisms and industrial application. Int J Adv Manuf Technol 37(3–4):265–278CrossRefGoogle Scholar
  8. 8.
    Pater Z (2003) Tools optimization in cross wedge rolling. J Mater Process Technol 139(1–3):153–159CrossRefGoogle Scholar
  9. 9.
    Herbertz R, Hermanns H (1997) Querkeilwalzen. Ein wirtschaftliches und flexibles Vorformverfahren für die Großserienfertigung. Schmiede-Journal, Industrieverband Massivumformung e 2:20–21Google Scholar
  10. 10.
    Wang B (2006) Roller type wedge cross-rolling process of shaping eccentric stepped shaft, Patent: CN000001810407A, WANG BAOYU HUGoogle Scholar
  11. 11.
    Johnson W, Mamalis AG (1977) A survey of some physical defects arising in metal working processes. In: 17th international MTDR conference, IFC, Ltd., eds., London, pp 607–621Google Scholar
  12. 12.
    Li Q et al (2002) Investigation of the morphology of internal defects in cross wedge rolling. J Mater Process Technol, no. 125–126:248–257Google Scholar
  13. 13.
    Lange K (1988) Umformtechnik Band 2: Massivumformung. Springer-Verlag, Berlin u.aGoogle Scholar
  14. 14.
    Xiong Y et al (2006) Effect of warm cross-wedge rolling on microstructure and mechanical property of high carbon steel rods. Mater Sci Eng A 431:152–157Google Scholar
  15. 15.
    Spies K (1959) Die-preforming and production using rolling (Die Zwischenformen beim Gesenkschmieden und ihre Herstellung durch Formwalzen). Westdeutscher Verlag, Köln, GermanyGoogle Scholar
  16. 16.
    Taca M, Vasile E, Alexandrescu E (2011) Influence of forging temperature on the mechanical properties of micro alloyed steels. In: The eighth international congress in materials science and engineering Iasi, Romania, 6–29 May 2011Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2012

Authors and Affiliations

  • Hanns Kache
    • 1
  • Malte Stonis
    • 1
  • Bernd-Arno Behrens
    • 1
    • 2
  1. 1.IPH—Institut für Integrierte Produktion Hannover gemeinnützige GmbHHannoverGermany
  2. 2.IFUM—Institut für Umformtechnik und UmformmaschinenLeibniz Universität HannoverGarbsenGermany

Personalised recommendations