Production Engineering

, Volume 6, Issue 2, pp 169–177 | Cite as

Exergy analysis of incremental sheet forming

  • M. A. Dittrich
  • T. G. Gutowski
  • J. Cao
  • J. T. Roth
  • Z. C. Xia
  • V. Kiridena
  • F. Ren
  • H. Henning
Production Process


Research in the last 15 years has led to die-less incremental forming processes that are close to realization in an industrial setup. Whereas many studies have been carried out with the intention of investigating technical abilities and economic consequences, the ecological impact of incremental sheet forming (ISF) has not been studied so far. Using the concept of exergy analysis, two ISF technologies, namely single sided and double sided incremental forming, are investigated and compared to conventional forming and hydroforming. A second exergy analysis is carried out with the purpose of examining the environmental impact of different forming technologies from a supply chain perspective. Therefore, related upstream activities (die set production, aluminum sheet production and energy conversion and supply) are included into the exergy analysis. The entire supply chain is modeled with Matlab/Simulink. The results of both analyses suggest that ISF is environmentally advantageous for prototyping and small production runs.


Incremental sheet forming Exergy analysis Degree of perfection 



The authors gratefully acknowledge the support of the U.S. Department of Energy, Award DE-EE0003460, technical contact Dr. Debo Archbhaumik.


  1. 1.
    Attanasio A, Ceretti E, Giardini C, Mazzoni L (2008) Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. J Mater Process Technol 197:59–67CrossRefGoogle Scholar
  2. 2.
    Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS (2000) Recent development in aluminum alloys for aerospace applications. Mater Sci Eng A280:102–107Google Scholar
  3. 3.
    Emmens W, Sebastiani G, van den Boogaard A (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210:981–997CrossRefGoogle Scholar
  4. 4.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114CrossRefGoogle Scholar
  5. 5.
    Cao J, Huang Y, Reddy NV, Malhotra R, Wang Y (2008) Incremental sheet metal forming: advances and challenges. In: International conference on technology of plasticity, Gyeongju, Korea, pp 1967–1982Google Scholar
  6. 6.
    Park JJ, Kim YH (2003) Fundamental studies on the incremental sheet metal forming technique. J Mater Process Technol 140:447–453CrossRefGoogle Scholar
  7. 7.
    Schuler GmbH (1998) Metal forming handbook. Springer, Berlin. ISBN:3540611851Google Scholar
  8. 8.
    Allwood JM, King GPF, Duflou J (2005) A structured search for applications of the incremental sheet-forming process by product segmentation. Proc Inst Mech Eng B J Eng Manuf 219(2):239–244Google Scholar
  9. 9.
    Malhotra R, Cao J, Ren F, Kiridena V, Xia Z.Cedric, Reddy NV (2011) Improvement of geometric accuracy in incremental forming by using a squeezing toolpath with two forming tools. ASME J Manuf Sci Eng (accepted)Google Scholar
  10. 10.
    Malhotra R, Reddy NV, Cao J (2010) Automatic spiral toolpath generation for single point incremental forming. ASME J Manuf Sci Eng 132(6):061003CrossRefGoogle Scholar
  11. 11.
    Gyftopoulos EP, Beretta BP (2005) Thermodynamics: foundations and applications. Dover Publications, Inc., Mineola, NY. ISBN:0486439321Google Scholar
  12. 12.
    Bakshi BR, Gutowski TG, Sekulić DP (2011) Thermodynamics and the destruction of resources. Cambridge University Press, New York. ISBN:0521884551Google Scholar
  13. 13.
    Branham M, Gutowski TG, Jones A, Sekulic DP (2008) A thermodynamic framework for analyzing and improving manufacturing processes. IEEE international symposium on electronics and the environment, 19–20 May 2008Google Scholar
  14. 14.
    Szargut J, Morris DR, Steward FR (1988) Exergy analysis of thermal, chemical and metallurgical processes. Hemisphere Publishing Corporation, New York. ISBN:0891165746Google Scholar
  15. 15.
    Lange K (1985) Handbook of metal forming. McGraw-Hill Book Company, New York. ISBN:0070362858Google Scholar
  16. 16.
    Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. In: Proceedings of IMECE2004, ASME international mechanical engineering congress and RD&D Expo, 13–19 Nov 2004, Anaheim, California USAGoogle Scholar
  17. 17.
    Matwick SE (2003) An economic evaluation of sheet hydroforming and low volume stamping and the effects of manufacturing systems analysis. Master of science in engineering thesis, Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  18. 18.
    Nachtman ES, Kalpakjian S (1985) Lubricants and lubrication in metalworking operations. Marcel Dekker Inc., New York, pp 223–247. ISBN:0824774019Google Scholar
  19. 19.
    Tschaetsch H (2006) Metal forming practice—processes, machines, tools. Springer, Berlin, pp 158–169. ISBN:3540332162Google Scholar
  20. 20.
    Ashby MF (2009) Materials and the environment, eco-informed material choice. Butterworth-Heinemann/Elsevier Inc, Amsterdam, Boston. ISBN:1856176088Google Scholar
  21. 21.
    Smil V (2008) Energy in nature and society—general energetics of complex systems. MIT Press, Cambridge, MA. ISBN:0262693569Google Scholar
  22. 22.
    Baniszewski B (2005) An environmental impact analysis of grinding. Bachelor of science in mechanical engineering at the Massachusetts Institute of TechnologyGoogle Scholar
  23. 23.
    Buzoverya MT, Yankovskii AS, Budnik LG, Laptev A, Maryasov MF (1985) Analysis of expenditures on heat and energy resources in pig-iron production. Metallurgist 29(12):378–379. doi: 10.1007/BF0074290 Google Scholar
  24. 24.
    Capman PF, Leach G, Slesser M (1974) The energy costs of fuels. Energy Policy 2(3):231–243. doi: 10.1016/0301-4215(74)90048-2 Google Scholar
  25. 25.
    Green JAS (2007) Aluminum recycling and processing for energy conversion and sustainability. ASM International, Materials Park, Ohio. ISBN:0871708590Google Scholar
  26. 26.
    Hammond G, Jones C (2011) Inventory of carbon & energy, version 1.6a, University of Bath, UK. Available from: Accessed 23 Jan 2011
  27. 27.
    Jones A (2007) The industrial ecology of the iron casting industry. Master of science in engineering thesis, Massachusetts Institute of Technology. Cambridge, MAGoogle Scholar
  28. 28.
    Koc M (2008) Hydroforming for advanced manufacturing. Woodhead Publishing, Cambridge. ISBN:1420077864CrossRefGoogle Scholar
  29. 29.
    Thiriez A (2006) An environmental analysis of injection molding. Master of science in mechanical engineering at the Massachusetts Institute of TechnologyGoogle Scholar
  30. 30.
    Wall G (1986) Exergy conversion in the Swedish society. Res Energy 9:55–73CrossRefGoogle Scholar
  31. 31.
    Wall G (1990) Exergy conversion in the Japanese society. Energy 15(5):435–444CrossRefGoogle Scholar
  32. 32.
    Worell E, Martin N, Price L (1999) Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector. Environmental Energy Technologies DivisionGoogle Scholar
  33. 33.
    Valero A (2010) Exergoecology: a thermodynamic approach for accounting the Earth’s mineral capital. The case of bauxite–aluminum and limestone–lime chains. Energy 35:229–238CrossRefGoogle Scholar
  34. 34.
    Schubert PB (1966) Die methods, design, fabrication, maintenance and application. Industrial Press Inc, Madison, Wisconsin, pp 383–390Google Scholar
  35. 35.
    Dittrich MA (2011) Exergy analysis of sheet metal prototyping technologies, research report. Leibniz University, HannoverGoogle Scholar
  36. 36.
    Kwiatkowski L, Urban M, Sebastiani G, Tekkaya AE (2010) Tooling concepts to speed up incremental sheet forming. Prod Eng Res Dev 4(1):57–64CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2012

Authors and Affiliations

  • M. A. Dittrich
    • 1
  • T. G. Gutowski
    • 1
  • J. Cao
    • 2
    • 6
  • J. T. Roth
    • 3
  • Z. C. Xia
    • 4
  • V. Kiridena
    • 4
  • F. Ren
    • 4
  • H. Henning
    • 5
  1. 1.Laboratory for Manufacturing and ProductivityMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Mechanical Engineering FacultyPenn State Erie, The Behrend CollegeErieUSA
  4. 4.Ford Motor CompanyDearbornUSA
  5. 5.Institute of Production Engineering and Machine Tools (IFW), Leibniz Universität HannoverGarbsenGermany
  6. 6.Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations