Advertisement

Production Engineering

, Volume 6, Issue 3, pp 267–276 | Cite as

Influence of the fabrication method on the wear resistance of hot forging dies

  • Bernd-Arno Behrens
  • Timur YilkiranEmail author
Tooling

Abstract

Tools used for hot forging are subject to simultaneously acting process-related high mechanical, tribological, chemical and thermal cyclic loads. In comparison to other manufacturing methods, the resulting load spectrum leads to a failure of the form-giving tool components after a short tool life. Wear is the main reason for die failure in hot forging processes, accounting for 70 % of all causes. Other kinds of failures are thermal and mechanical cracks as well as plastic deformation (a result of the loss of hardness due to the high thermal charge). In order to reduce wear, several kinds of wear reducing methods are subject of industrial applications as well as research works. For example, nitriding and optional thin hard coating or overlay welding are effective methods to increase the wear resistance of hot forging dies. Beside the process related stresses during the service, manufacturing of forging tools itself initializes microstructural changes in their subsurface zones. During fabrication, the general influence of the fabrication method on the tool lifetime has not been considered so far. The implementation of the knowledge of this influence into the fabrication process could lead to an increased productivity of hot forging processes without using expensive and complex wear reducing methods.

Keywords

Hot forging Wear resistance Cracks Hot working steel EDM HSC Martensite 

Notes

Acknowledgments

The presented investigations were carried out within the German Research Foundation (DFG) project No. Be-1691-23-1 “Untersuchung der Zusammenhänge zwischen Gesenkherstellverfahren und den mikrostrukturellen Vorgängen in der Werkzeugrandschicht von Schmiedegesenken beim Schmieden”. We are thankful for the assistance provided.

References

  1. 1.
    Bistron M, Behrens B-A, Paschke H (2010) Reduction of wear by boron based multilayer coatings on forging dies. In: Proceedings metal forming 2010, 13th International Conference, Steel Research International 81/9, pp 290–293. ISBN 978-3-514-00754-3Google Scholar
  2. 2.
    Behrens B-A, Bräuer G, Paschke H, Bistron M (2011) Reduction of wear at hot forging dies by using coating systems containing boron. Prod Eng Res Dev. doi: 10.1007/s11740-011-0308-z
  3. 3.
    Behrens B-A, Bach Fr-W, Denkena B, Möhwald K, Deißer T, Kramer N, Bistron M (2009) Manufacturing of reinforced high precision forging dies. Steel Res Int 80:878–886Google Scholar
  4. 4.
    Bistron M, Behrens B-A, Bach Fr-W, Möhwald K, Deißer T (2010) Reduction of wear by using boron containing thin coatings at forging of helical gears. In: Proceedings of the 16th International Symposium on Plasticity: “Finite Plasticity and Visco-plasticity of conventional and Emerging Materials”, pp 187–189. ISBN:0-9659463-2-0Google Scholar
  5. 5.
    Weber M (2005) „Neue Schichtsysteme für die Umformtechnik - Werkzeugbeschichtungen für die temperierte Umformung. Beschichtete Werkzeuge – höhere Wirtschaftlichkeit in der Ur- und Umformtechnik“, Workshop EFDS, Dresden 2005Google Scholar
  6. 6.
    Industrielle Gemeinschaftsforschung 16587 N (2010) „Nitrierte Werkzeugrandzustände für Schmiedegesenke - Anpassung an das Beanspruchungsprofil des Schmiedeprozesses“, Stiftung IWT BremenGoogle Scholar
  7. 7.
    Klümper-Westkamp H (2009) „Optimierung der Randschichtzusammensetzung durch Nitrieren von Werkzeugen der Warmmassivumformung zur Steigerung der Lebensdauer“, Studie, Industrieverband MassivumformungGoogle Scholar
  8. 8.
    Pfahl A, Puchert A, Behrens B-A, Bach F-W (2009) Wear reduction of forging dies by new alloy development—the influence of manganese on the reduction of the Ac1b-temperature. HTM 64-5, pp 291–296Google Scholar
  9. 9.
    Puchert A, Pfahl A, Behrens B-A, Bach Fr-W (2009) Increasing the wear resistance of hot working steel by lowering the eutectoid temperature. Advanced Metal Materials and Technologies, St. Petersburg, pp 46–56Google Scholar
  10. 10.
    Buchmayr B (2011) Reparaturtechnologien – Übersicht der Möglichkeiten. Workshop Schmiedewerkzeuge Technologien – Entwicklungen – Analysen. ISBN 978-3-902078-16-2Google Scholar
  11. 11.
    Behrens B-A, Yilkiran T (2011) „Präzise Herstellung sichert fehlerfreien Umformprozess“, MM Maschinenmarkt, Ausgabe 6, Vogel Business Media, pp 26–29Google Scholar
  12. 12.
    Yilkiran T (2010) „Untersuchungen zu den Randzonenbeeinflussungen von Werkzeugen für die Warmmassivumformung infolge verschiedener Fertigungsverfahren“, UTF Science, Meisenbach Verlag, pp 1–12Google Scholar
  13. 13.
    Grosch J (1989) „Einfluß der funkenerosiven Bearbeitung auf Gefüge und Eigenschaften verschiedener Stähle“, Dr.-Ing. Dissertation, TU BerlinGoogle Scholar
  14. 14.
    Habedank G (2004) „Neuartige Bearbeitungsverfahren zur Modifizierung senkerodierter Randschichten“, Dr.-Ing. Dissertation, Shaker Verlag Aachen. ISBN: 978-3832236267Google Scholar
  15. 15.
    Pouteau P (2009) „Einfluss charakteristischer Werkstoffeigenschaften auf die Werkstückrandschicht und Spanbildung beim Hochgeschwindigkeitsdrehen“, Dr.-Ing. Dissertation, TU Bremen. ISBN: 978-3-8322-9015-3Google Scholar
  16. 16.
    Denkena B, Boehnke D, Meyer R (2008) Reduction of wear induced surface zone effects during hard turning by means of new tool geometries. Prod Eng Res Dev 2:123–132. doi: 10.1007/s11740-008-0089-1 CrossRefGoogle Scholar
  17. 17.
    Doege E, Behrens B-A (2010) „Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen“, Springer, Berlin. ISBN: 3540234411Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2012

Authors and Affiliations

  1. 1.Institute of Forming Technology and MachinesLeibniz Universitaet HannoverGarbsenGermany

Personalised recommendations