Advertisement

Production Engineering

, Volume 5, Issue 5, pp 557–564 | Cite as

Linking total costs and benefits of ownership (TCBO) and process chain simulation for integrated assessment of manufacturing technologies and processes

  • B. Denkena
  • J. Schürmeyer
  • M. Eikötter
Production Management

Abstract

Current methods of technology assessment seldom include the manufacturing processes and organization around the investment target. As most interdependencies cannot be quantified, companies predominantly assess technology investments via methods which exclude monetary evaluation of technological aspects. Moreover, future costs and benefits of the manufacturing technologies are rarely considered systematically when making conventional investment decisions. This procedure does not necessarily lead to an optimal investment choice. In order to invest in low life-cycle costs technologies, the costs within the manufacturing processes and organization around the investment target, as well as all future costs and benefits, have to be carefully considered. The following paper introduces a new approach to analysing Total Costs and Benefits of Ownership (TCBO) using process chain simulation models. A representative manufacturing concept provides a practical insight how to use simulation in order to generate a database for technology assessment. Furthermore, the article discusses how future costs and benefits as well as the Net Present Value method, could be integrated within the TCBO-approach.

Keywords

Production management Machine tool Technology assessment 

Notes

Acknowledgments

This research work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the Project "Integrated Assessing of Technologies and Manufacturing Processes” (DE 447/72-1).

References

  1. 1.
    Gerybadze A (1996) Technologische Vorhersagen. In: Kern W, Schröder H-H, Weber J (eds) Handwörterbuch der Produktionswirtschaft. Schäffer-Poeschel, StuttgartGoogle Scholar
  2. 2.
    Baldwin J, Scott J (1987) Market structure and technological change. Harwood Academic Publishers, LondonGoogle Scholar
  3. 3.
    Barro RJ, Sala-i-Martin X (1995) Economic growth. MIT Press, New YorkGoogle Scholar
  4. 4.
    Segerstrom PS (1991) Innovation, imitation, and economic growth. J Polit Econ 99(4):807–827CrossRefGoogle Scholar
  5. 5.
    Ford D, Ryan C (1981) Taking technology to market. Harv Bus Rev 2:117–126Google Scholar
  6. 6.
    Ansoff HI (1984) Implanting strategic management. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  7. 7.
    Christensen CM (1999) Innovation and the general manager. Irwin/McGraw Hill, Boston, MassGoogle Scholar
  8. 8.
    Cioffi DF (2005) A tool for managing projects: an analytic parameterization of the S-curve. Int J Project Manag 23:215–222CrossRefGoogle Scholar
  9. 9.
    Maidique MA, Patch P (1982) Corporate strategy and technological policy. In: Tushman ML, Moore WL (eds) Readings in the management of innovation. Cambridge University Press, Cambridge, Mass, pp 273–285Google Scholar
  10. 10.
    Tanaka M (1989) Cost planning and control systems in the design phase of a new product. In: Monden Y, Sakurai M (eds) Japanese management accounting. A world class approach to profit management. Productivity press, Cambridge, Massachusetts, pp 49–71Google Scholar
  11. 11.
    Lowe P (1995) The management of technology. Chapman & Hall, LondonGoogle Scholar
  12. 12.
    Dickinson MW, Thornton AC, Graves S (2001) Technology portfolio management: optimizing interdependent project over multiple time periods. IEEE Trans Eng manag 58(4):518–524CrossRefGoogle Scholar
  13. 13.
    Yu OS (2006) Technology portfolio planning and management—practical concept and tools. Springer, New YorkGoogle Scholar
  14. 14.
    Westkämper E (2007) Strategic development of factories under the influence of emergent technologies. CIRP Ann Manuf Technol 56(1):419–422CrossRefGoogle Scholar
  15. 15.
    Phaal R, Farrukh CJP, Probert DR (2004) Technology roadmapping—A planning framework for evolution and revolution. Technol Forecast Soc Change 71(1–2):5–25CrossRefGoogle Scholar
  16. 16.
    Farrukh C, Phaal R, Probert D (2003) Technology roadmapping: linking technology resources into business planning. Int J Technol Manag 26(1):2–19CrossRefGoogle Scholar
  17. 17.
    Nyhuis P, Wulf S, Klemke T (2010) Integrative factory, technology, and product planning—systemizing the information transfer on the operational level. Prod Eng Res Dev 4:231–237CrossRefGoogle Scholar
  18. 18.
    Giebel M, Essmann H, Du Preez N, Jochen R (2009) Improved innovation through the integration of Quality Gates into the Enterprise and Product Lifecycle Roadmaps. CIRP J Manuf Sci Technol 1(3):100–205Google Scholar
  19. 19.
    Grienitz V (2004) Technologieszenarien: Eine Methodik zur Erstellung von Technologieszenarien für die strategische Technologieplanung, HNI-Verlagsschriftenreihe 151, Phd thesis, Universität PaderbornGoogle Scholar
  20. 20.
    Zinser S (2000) Eine Vorgehensweise zur szenariobasierten Frühnavigation im strategischen Technologiemanagement, IPA-IAO-Forschung und-Praxis 323, Phd thesis, Universität StuttgartGoogle Scholar
  21. 21.
    Schäfer H (2005) Unternehmensinvestition–Grund-züge in Theorie und Management, 2. Auflage. Pysica-Verlag, HeidelbergGoogle Scholar
  22. 22.
    Götze U (2006) Investitionsrechnung–Modelle und Analysen zur Beurteilung von Investitions-vorhaben, 5. Auflage. Springer, BerlinGoogle Scholar
  23. 23.
    Ashford RW, Dyson RG, Hodges SD (1988) The capital-investment appraisal of new technology: problems, misconceptions and research directions. J Oper Res Soc 39(7):637–642Google Scholar
  24. 24.
    Dore MHI (1977) Dynamic investment planning. Croom Helm Ltd, LondonGoogle Scholar
  25. 25.
    Olmsted Teisberg E (1995) Methods of evaluating capital investments decisions under uncertainty. In: Trigeorgis L (ed) Real options in capital investments: models, strategies and applications. Praeger Publishers, Westport, pp 31–47Google Scholar
  26. 26.
    Levitt T (1965) Exploit the product life cycle. Harv Bus Rev November–December, pp 81–94Google Scholar
  27. 27.
    Ellram LM (1993) A framework for total cost of ownership. Int J Logist Manag 4:49–60CrossRefGoogle Scholar
  28. 28.
    Weyrauch J (2002) Optimierung der Lebenszykluskosten im Anlagenbau, Phd thesis, Universität MagdeburgGoogle Scholar
  29. 29.
    Janz D, Sihn W (2005) Product redesign using value-oriented life cycle costing. CIRP Ann Manuf Technol 54(1):9–12CrossRefGoogle Scholar
  30. 30.
    Niemann J, Westkämper E (2005) Product life cycle management in the digital age. In: Leondes CT (ed) Intelligent knowledge-based systema, vol II. World Scientific Publishing, London, pp 677–707Google Scholar
  31. 31.
    Denkena B, Henning H, Lorenzen L-E (2010) Genetics and intelligence: new approaches in production engineering. Prod Eng 4(1):65–73CrossRefGoogle Scholar
  32. 32.
    VDI 2884 (2005) Purchase, operating and maintenance of product equipment using Life Cycle Costing (LCC). Verein Deutscher Ingenieure (VDI), DüsseldorfGoogle Scholar
  33. 33.
    VDMA-Einheitsblatt 66412-1 (2009) Manufacturing execution systems (MES) Kennzahlen, BeuthGoogle Scholar
  34. 34.
    Mishan EJ, Quah E (2007) Cost benefit analysis. Routledge, New YorkGoogle Scholar
  35. 35.
    Volpert V (1989) Kapitalwert und Ertragssteuer—Bedeutung der Finanzierungsprämisse in der Investitionsrechnung, Dt. Universitätsverlag, WiesbadenGoogle Scholar
  36. 36.
    DIN EN 60300-3-3 (2005) Dependebility management—part 3.3: application guide—Life cycle costing, BerlinGoogle Scholar
  37. 37.
    Däumler K-D (2007) Grundlagen der Investitions-und Wirtschaftlichkeitsrechnung. NWB Verlag, HerneGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2011

Authors and Affiliations

  1. 1.Institute of Production Engineering and Machine Tools, Leibniz Universität HannoverGarbsenGermany

Personalised recommendations