Advertisement

Production Engineering

, Volume 4, Issue 1, pp 75–83 | Cite as

Square Foot Manufacturing: a new production concept for micro manufacturing

  • Jens Peter Wulfsberg
  • Tobias Redlich
  • Peter Kohrs
Production Management

Abstract

Today a large number of microstructures are already employed as separate components or as constituents of larger modules in a broad spectrum of production in medical technology, optics, biotechnology, mechatronics, fluidics, (micro)-forming and tool construction. Current research activities are directed towards the downscaling of manufacturing procedures or the formation of complex process chains for the manufacture of micro workpieces. The Square Foot Manufacturing concept represents one approach aimed at achieving significant technical, economic and ecological developments in the production of microstructures by means of machining techniques that can be applied to a spectrum of materials as broad as possible. This fabrication concept representing a refinement of existing desktop manufacturing concepts is currently being developed at the Institute of Production Engineering of Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg. This paper is intended to provide an overview of the theoretical concept and the current state of its technical implementation.

Keywords

Square Foot Manufacturing Micro manufacturing Production system 

References

  1. 1.
    Wicht H, Bouchaud J (2005) NEXUS market analysis for MEMS and microsystems III 2005–2009. Mst news 5:33–34Google Scholar
  2. 2.
    Steg H (2004) Internationale Marktentwicklung in der MST. mst online, VDI/VDE Innovation + Technik GmbH, BerlinGoogle Scholar
  3. 3.
    Hesselbach J, Raatz A, Wrege J, Herrmann H, Weule H, Buchholz C, Trischler H, Knoll M, Elsner J, Klocke F, Weck M, Von Bodenhausen J, Von Klitzing A (2003) mikroPRO—Untersuchung zum Internationalen Stand der Mikroproduktionstechnik. wt Werkstattstechnik online 93(2003):119–128Google Scholar
  4. 4.
    Lehmann J (2008) Kombinierte multifunktionale Arbeitsräume zur Restrukturierung der Mikroproduktion. Dissertation. Helmut-Schmidt-UniversityGoogle Scholar
  5. 5.
    Ehmann KF, Bourell D, Culpepper ML, Hodgson TJ, Kurfess TR, Madou M, Rajurkar KP, Devor RE (2007) Micromanufacturing—international research and development. Springer, BerlinGoogle Scholar
  6. 6.
    Mahalik NP (2006) Micromanufacturing and nanotechnology. Springer, BerlinGoogle Scholar
  7. 7.
    Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromanufacturing. Ann CIRP 55(2):745–768CrossRefGoogle Scholar
  8. 8.
    Liang Y, Zhao Y, Bai Q, Wang S, Wang B, Chen M, Dou J (2006) Study on micromachine tools in fabrication of microparts. In: Proceedings of the IEEE international conference on nano/micro engineered and molecular systems, Zhuhsi, China, 18–21 January 2006Google Scholar
  9. 9.
    Mishima N, Kondoh S, Nakano S, Ashida K, Masui K (2008) Concept proposal of a miniature on-demand factory and its efficiency evaluation. In: IEEE/ASME international conference on advanced intelligent mechatronics (pp 791–796), Xi’an, China, 2–5 July 2008Google Scholar
  10. 10.
    Kawahara N, Suto T, Hirano T, Ishikawa Y, Kitahara T, Ooyama N, Ataka T (1997) Microfactories; new applications of micromachine technology to the manufacture of small products. J Microsyst Technol 3(2):37–41CrossRefGoogle Scholar
  11. 11.
    Okazaki Y, Mishima N, Ashida K (2004) Microfactory—concept, history, and developments. J Manuf Sci Eng 126:837–844CrossRefGoogle Scholar
  12. 12.
    Friedli T (2006) Technologiemanagement—Modelle zur Sicherung der Wettbewerbsfähigkeit. Springer, BerlinGoogle Scholar
  13. 13.
    Corsten H (2007) Produktionswirtschaft—Einführung in das industrielle Produktionsmanagement. Oldenbourg, MunichGoogle Scholar
  14. 14.
    Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing—classification, design and operation. Ann CIRP 56(2):783–809CrossRefGoogle Scholar
  15. 15.
    Heger CL (2006) Bewertung der Wandlungsfähigkeit von Fabrikobjekten. Dissertation, Universität HannoverGoogle Scholar
  16. 16.
    Eversheim W, Schuh G, Fricker I (2004) Autonome Produktionszellen: Ein Weg zur Emanzipation der Produktion. In: Klocke F, Pritschow G (eds) Autonome Produktion. Springer, Berlin, pp 535–546Google Scholar
  17. 17.
    Nyhuis P, Heinen T, Reinhart G, Rimpau C, Abele E, Wörn A (2008) Wandlungsfähige Produktionssysteme—Theoretischer Hintergrund zur Wandlungsfähigkeit von Produktionssystemen. wt Werkstattstechnik online 98(1/2):85–91Google Scholar
  18. 18.
    Lindemann U, Zäh M, Gahr A, Pulm U, Ulrich C, Wagner W (2002) Massenproduktion mit Losgröße 1. ZWF 97(5):269–273Google Scholar
  19. 19.
    Spur G (2007) Technologische Komplexität als Herausforderung. ZWF 102(10):606–607Google Scholar
  20. 20.
    Wulfsberg JP, Redlich T, Lehmann J, Bruhns F-L (2008) Square Foot Manufacturing—Ein wandlungsfähiges Produktionssystem für die Fertigung von Mikroteilen. wt Werkstattstechnik online 98(5):337–344Google Scholar
  21. 21.
    Wulfsberg JP, vScotti F, Kohrs P (2008) Square Foot Manufacturing—an innovative production concept for micromachining. In: Proceedings of euspen international conference, ZurichGoogle Scholar
  22. 22.
    Redlich T, Wulfsberg JP, Lehmann J, Bruhns F-L (2008) Square Foot Manufacturing—event driven manufacturing by means of multifunctional work spaces. In: ASME international mechanical engineering congress and exposition, Boston, USA, 31 Oct–06 November 2008Google Scholar
  23. 23.
    Wulfsberg JP, Lehmann J, Bruhns F-L (2004) Selbstjustierendes koordinatentreues Spannsystem für die Mikroproduktion. Deutsches Patent- und Markenamt, München, Aktenzeichen 10 2004 059 456.2Google Scholar
  24. 24.
    Wulfsberg JP, Lehmann J, Bruhns F-L (2005) Dynamisch-starre Kopplung von hybriden Bearbeitungsräumen bei Desktop Manufacturing-Maschinen. Deutsches Patent- und Markenamt, München, Aktenzeichen 10 2005 024 693.1Google Scholar
  25. 25.
    Kohrs P, Wulfsberg JP (2009) Square Foot Manufacturing—a progress report. In: International conference of the european society for precision engineering and nanotechnology, San Sebastian, Spain, 2–5 June 2009Google Scholar
  26. 26.
    Lobontiou N, Paine J, O’Malley E, Samuelson M (2002) Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress charaterization based on compliance closed-form equations. J Precis Eng 26:183–192CrossRefGoogle Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2009

Authors and Affiliations

  • Jens Peter Wulfsberg
    • 1
  • Tobias Redlich
    • 1
  • Peter Kohrs
    • 1
  1. 1.Institut für Konstruktions- und Fertigungstechnik, Laboratorium FertigungstechnikHelmut-Schmidt-Universität/Universität der Bundeswehr HamburgHamburgGermany

Personalised recommendations