Production Engineering

, 3:489 | Cite as

A multi-dimensional measure for determining the complexity of manual assembly operations

  • Michael F. Zaeh
  • Mathey Wiesbeck
  • Sonja Stork
  • Anna Schubö


A key to solving the discrepancies of deterministic and static assembly sequences at manual work places is seen in situation-oriented and cognitive methodologies in assembly. These provide means for efficient and ergonomically feasible worker guidance. An accurate and detailed technique of adjusting the instructional content is seen as a prerequisite. In this context the authors present factors for a multi-dimensional measurement of the degree of detail and complexity of manual assembly tasks. It extends the concept and application of common systems of predetermined times. It includes dimensions of actual human performance and attention allocation, as well as learning effects based on the product and its reference levels. It is assumed that identifying global attributes that contribute to assembly difficulty will provide means for predicting assembly complexity more effectively.


Assembly Human Man–machine system 


  1. 1.
    Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing–classification, design and operation. Ann CIRP 56(2):783–809CrossRefGoogle Scholar
  2. 2.
    Zäh MF, Beetz M, Shea K, Reinhart G, Bender K, Lau C, Ostgathe M, Vogl W, Wiesbeck M, Engelhard M, Ertelt C, Ruehr T, Friedrich M, Herle S (2009) The cognitive factory. In: ElMaraghy HA (ed) Changeable and reconfigurable manufacturing systems. London, SpringerGoogle Scholar
  3. 3.
    ElMaraghy WH, Urbanic RJ (2004) Assessment of manufacturing operational complexity. Ann CIRP 53(1):401–406CrossRefGoogle Scholar
  4. 4.
    Jensen PL, Alting L (2006) Human factors in the management of production. Ann CIRP 55(1):457–460CrossRefGoogle Scholar
  5. 5.
    Reinhart G, Patron C (2003) Integrating augmented reality in the assembly domain–fundamentals, benefits and applications. Ann CIRP 52(1):5–8CrossRefGoogle Scholar
  6. 6.
    Zaeh M, Prasch M (2007) Systematic workplace and assembly redesign for aging workforces. J Prod Eng 1(1):57–64CrossRefGoogle Scholar
  7. 7.
    Kjellberg A, Abestam L (1997) Human factor framework for analysis of an assembly work. Ann CIRP 46(1):377–380CrossRefGoogle Scholar
  8. 8.
    Zäh M, Wiesbeck M, Wallhoff F, Stork S, Engstler F, Bannat A, Schubö A, Friesdorf F (2007) Kognitive Assistenzsysteme in der manuellen Montage. Wt Werkstattstechnik online, 97(9):644–650Google Scholar
  9. 9.
    Dopping-Hepenstal LL (1981) Head-up displays: the integrity of flight information. IEE Proc-F Commun Radar Signal Process 128(7):440–442Google Scholar
  10. 10.
    Yeh M, Wickens CD (2000) Attention and trust biases in the design of augmented reality displays. Technical report. Chicago, Aviation research lab of the University of IllinoisGoogle Scholar
  11. 11.
    Zaeh MF, Wiesbeck M, Stork S, Schubö A (2009) Factors for a task-induced complexity measure for manual assembly operations. 3rd international conference on changeable, agile, reconfigurable and virtual production (CARV 2009), Munich, Germany, 2009Google Scholar
  12. 12.
    Picker C (2007) Prospektive Zeitbestimmung für nicht wertschöpfende Montagetätigkeiten, Aachen, ShakerGoogle Scholar
  13. 13.
    Hinckley M (1993) A global conformance quality model—a new strategic tool for minimizing defects caused by variation, error and complexity. Stanford University, StanfordGoogle Scholar
  14. 14.
    Beiter KA, Cheldelin B, Ishii K (2000) Assembly quality method: a tool in aid of product strategy, design and process improvements.In: ASME design engineering technical conference, BaltimoreGoogle Scholar
  15. 15.
    Shibata H, Cheldelin B, Ishii K (2003) Assembly quality method: integrating design for assembly cost-effectiveness (DAC) to improve defect prediction. In: ASME design engineering technical conference, ChicagoGoogle Scholar
  16. 16.
    Kim YH (1999) A system complexity approach for the integration of product development and production system design. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  17. 17.
    Kief L (2002) Eine Methode zur Ermittlung statistisch abgesicherter Montagezeiten im Produktentwicklungsprozess. Verlag Praxiswissen, DortmundGoogle Scholar
  18. 18.
    Westkämper E, Sautter K, Meyer R (1998) Eine Empirische Untersuchung zum Methodeneinsatz in Produzierenden Unternehmen. Fachtagung “Mehr Erfolg durch professionellen Methodeneinsatz”. Fraunhofer IRB, DarmstadtGoogle Scholar
  19. 19.
    Papenfuß R, Theis K-D (1988) Die WORK-FACTOR-Verfahren. Angewandte Arbeitswissenschaft 117:3–18Google Scholar
  20. 20.
    Boothroyd G, Alting L (1992) Design for assembly and disassembly. Ann CIRP 41(2):625–636CrossRefGoogle Scholar
  21. 21.
    Miyakawa S, Ohashi T (1986) The Hitachi assembly evaluation method (AEM). In: International conference on product design for assembly, Newport, Rhode IslandGoogle Scholar
  22. 22.
    Bokranz R, Landau K (2006) Produktivitätsmanagement von Arbeitssystemen. Schäffer-Poeschel, StuttgartGoogle Scholar
  23. 23.
    Wickens CD (2002) Multiple resources and performance prediction. Theor Issues Ergon Sci 32:159–177CrossRefGoogle Scholar
  24. 24.
    Stoessel C, Wiesbeck M, Stork S, Zaeh MF, Schuboe A (2008) Towards optimal worker assistance: investigating cognitive processes in manual assembly. In: Mitsuishi M, Ueda K, Kimura F (Eds.) The 41st CIRP conference on manufacturing systems. Springer, Tokyo, JapanGoogle Scholar
  25. 25.
    Stork S, Stobel C, Müller H, Wiesbeck M, Schubö A (2007) A neuroergonomic approach for the investigation of cognitive processes in interactive assembly environments.In: 16th IEEE international symposium on robot and human interactive communication 2007 (IEEE RO-MAN 2007)Google Scholar
  26. 26.
    Norman DA, Bobrow DG (1975) On data-limited and resource-limited processing. Cogn Psychol 74:4–64Google Scholar
  27. 27.
    Müller HJ, Krummenacher J (2002) Aufmerksamkeit. In: Müsseler J, Prinz W (eds) Allgemeine Psychologie. Elsevier, HeidelbergGoogle Scholar
  28. 28.
    Jayaram S, Connacher H, Lyons K (1997) Virtual assembly using virtual reality techniques. Comput Aided Des 29(88):575–584CrossRefGoogle Scholar
  29. 29.
    Gupta R, Whitney D, Zeltzer D (1997) Prototyping and design for assembly analysis using multimodal virtual environments. Comput Aided Des 29(88):585–597CrossRefGoogle Scholar
  30. 30.
    Carpenter ID, Dewer RG, Richie JM, Simmons JEL (1996) Enhancing a virtual environment for manual assembly. In: 12th international conference on CAD/CAM robotics and factories of the futureGoogle Scholar
  31. 31.
    Homem de Mello LS, Sanderson AC (1991) Representations of mechanical assembly sequences. IEEE Trans Rob Autom 7(2):211–227CrossRefGoogle Scholar
  32. 32.
    Sanderson AC, Zhang H, Homem de Mello LS (1989) Assembly sequence planning. Manuscript prepared for AI Magazine: special issue on assembly planning, Vol 33Google Scholar
  33. 33.
    Lee S (1992) Backward assembly planning with assembly cost analysis. In: Proceedings of 1992 IEEE international conference on robotics and automation. NiceGoogle Scholar
  34. 34.
    Homem de Mello LS, Sanderson AC (1991) A correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Trans Rob Autom 7(2):228–240CrossRefGoogle Scholar
  35. 35.
    Gu T, Xu Z, Yang Z (2008) Symbolic OBDD representations for mechanical assembly sequences. Comput Aided Des 40(4):411–421CrossRefGoogle Scholar
  36. 36.
    Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K (2005) Three-dimensional shape searching: state-of-the-art review and future trends. Comput Aided Des 37(5):509–530CrossRefGoogle Scholar
  37. 37.
    Dmitriy B, Cheuk Yiu I, William CR, Joshua S (2005) Benchmarking CAD search techniques. In: Proceedings of the 2005 ACM Symp on solid and physical modeling. Cambridge, MassachusettsGoogle Scholar
  38. 38.
    Stork S, Stössel C, Schubö A (2008) The influence of instruction mode on reaching movements during manual assembly. USAB 2008—Usability—HCI for education and work, lecture notes in computer science LNCS, Austria, GrazGoogle Scholar
  39. 39.
    Stork S, Stössel C, Schubö A (2008) Optimizing Human–Machine Interaction in Manual Assembly. In: Proceedings of 17th IEEE international conference on robot and human interactive communication (RO-MAN)Google Scholar

Copyright information

© German Academic Society for Production Engineering (WGP) 2009

Authors and Affiliations

  • Michael F. Zaeh
    • 1
  • Mathey Wiesbeck
    • 1
  • Sonja Stork
    • 2
  • Anna Schubö
    • 2
  1. 1.Institute for Machine Tools and Industrial Management (iwb)Technische Universitaet MuenchenGarchingGermany
  2. 2.Experimental PsychologyLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations